Coursera
  • Título en líneaExplorar títulos de grado de Licenciaturas y Maestrías
  • MasterTrack™Obtén crédito para una Maestría
  • Certificados universitariosImpulsa tu carrera profesional con programas de aprendizaje de nivel de posgrado
Buscar carrerasPara EmpresasPara universidades
  • Explorar
  • Principales cursos
  • Inicia Sesión
  • Únete de forma gratuita
    Coursera
    • Explorar
    • Bayesian Statistics

    Filtrar por

    113 resultados para "bayesian statistics"

    • Placeholder
      University of California, Santa Cruz

      Bayesian Statistics

      Habilidades que obtendrás: Probability & Statistics, Bayesian Statistics, General Statistics, Probability Distribution, Data Science, Statistical Programming, R Programming, Regression, Forecasting, Machine Learning, Markov Model, Statistical Machine Learning, Bayesian Network, Basic Descriptive Statistics, Estimation, Experiment, Correlation And Dependence, Data Visualization, Machine Learning Algorithms, Statistical Tests, Statistical Visualization, Advertising, Business Analysis, Communication, Data Analysis, Graph Theory, Marketing, Mathematics, Statistical Analysis

      4.6

      (3.3k reseñas)

      Intermediate · Specialization · 3-6 Months

    • Placeholder
      University of California, Santa Cruz

      Bayesian Statistics: From Concept to Data Analysis

      Habilidades que obtendrás: Data Science, General Statistics, Probability & Statistics, Bayesian Statistics, Probability Distribution, R Programming, Statistical Programming, Basic Descriptive Statistics, Experiment, Regression, Estimation

      4.6

      (3k reseñas)

      Intermediate · Course · 1-4 Weeks

    • Placeholder
      Duke University

      Bayesian Statistics

      Habilidades que obtendrás: Bayesian Statistics, General Statistics, Probability & Statistics, Regression, Mathematics, Statistical Programming, R Programming, Probability Distribution

      3.8

      (785 reseñas)

      Intermediate · Course · 1-3 Months

    • Placeholder
      Johns Hopkins University

      Data Science: Statistics and Machine Learning

      Habilidades que obtendrás: R Programming, Statistical Programming, General Statistics, Statistical Analysis, Data Analysis, Machine Learning, Probability & Statistics, Statistical Tests, Data Science, Machine Learning Software, Basic Descriptive Statistics, Bayesian Statistics, Correlation And Dependence, Econometrics, Estimation, Linear Algebra, Regression, Exploratory Data Analysis, Theoretical Computer Science, Data Visualization, Interactive Data Visualization, Natural Language Processing, Probability Distribution, Plot (Graphics), Machine Learning Algorithms, Algorithms, Applied Machine Learning, Business Analysis

      4.4

      (7k reseñas)

      Intermediate · Specialization · 3-6 Months

    • Placeholder
      University of California, Santa Cruz

      Bayesian Statistics: Techniques and Models

      Habilidades que obtendrás: Probability & Statistics, Bayesian Statistics, Probability Distribution, R Programming, Statistical Programming, Regression, General Statistics, Machine Learning, Estimation, Markov Model, Basic Descriptive Statistics, Correlation And Dependence, Data Visualization, Experiment, Machine Learning Algorithms, Statistical Machine Learning, Statistical Tests, Statistical Visualization, Business Analysis, Data Analysis, Graph Theory, Mathematics, Statistical Analysis

      4.8

      (451 reseñas)

      Intermediate · Course · 1-3 Months

    • Placeholder
      Google Cloud

      Preparing for Google Cloud Certification: Machine Learning Engineer

      Habilidades que obtendrás: Machine Learning, Cloud Computing, Google Cloud Platform, Computer Programming, Cloud Platforms, Statistical Programming, Python Programming, Data Management, Applied Machine Learning, Feature Engineering, Tensorflow, Deep Learning, Entrepreneurship, Probability & Statistics, DevOps, Data Analysis, Big Data, Artificial Neural Networks, Business Psychology, Computer Architecture, Exploratory Data Analysis, Regression, Theoretical Computer Science, Data Science, Kubernetes, Apache, Basic Descriptive Statistics, Bayesian Statistics, Computational Thinking, Computer Networking, Data Model, Data Structures, Data Visualization, Distributed Computing Architecture, Extract, Transform, Load, General Statistics, Hardware Design, Machine Learning Algorithms, Machine Learning Software, Network Security, Performance Management, SQL, Security Engineering, Security Strategy, Statistical Machine Learning, Statistical Visualization, Strategy and Operations, Algorithms, Business Analysis, Cloud Applications, Cloud Infrastructure, Cloud Storage, Data Analysis Software, Data Architecture, Data Warehousing, Database Application, Databases, Dimensionality Reduction, Full-Stack Web Development, Information Technology, Natural Language Processing, Statistical Analysis, Web Development

      4.6

      (25k reseñas)

      Intermediate · Professional Certificate · 3-6 Months

    • Placeholder

      Gratis

      Placeholder
      Stanford University

      Introduction to Statistics

      Habilidades que obtendrás: Data Science, General Statistics, Probability & Statistics, Statistical Tests, Estimation, Basic Descriptive Statistics, Correlation And Dependence, Probability Distribution, Regression, Bayesian Statistics, Data Analysis, Data Visualization, Econometrics, Experiment, Machine Learning, Markov Model, Plot (Graphics), Statistical Analysis, Statistical Visualization

      4.5

      (1.9k reseñas)

      Beginner · Course · 1-3 Months

    • Placeholder
      Placeholder
      Johns Hopkins University

      Data Science

      Habilidades que obtendrás: R Programming, Data Analysis, Statistical Programming, Data Science, General Statistics, Statistical Analysis, Probability & Statistics, Statistical Tests, Machine Learning, Exploratory Data Analysis, Basic Descriptive Statistics, Machine Learning Software, Linear Algebra, Bayesian Statistics, Correlation And Dependence, Econometrics, Estimation, Regression, Data Visualization Software, Software Visualization, Statistical Visualization, Probability Distribution, Theoretical Computer Science, Data Visualization, Interactive Data Visualization, Natural Language Processing, Plot (Graphics), Big Data, Computer Programming, Computer Programming Tools, Data Structures, Experiment, Machine Learning Algorithms, Software Engineering Tools, Spreadsheet Software, Algorithms, Application Development, Applied Machine Learning, Business Analysis, Data Management, Extract, Transform, Load, Knitr

      4.5

      (49.8k reseñas)

      Beginner · Specialization · 3-6 Months

    • Placeholder

      Gratis

      Placeholder
      Eindhoven University of Technology

      Improving your statistical inferences

      Habilidades que obtendrás: Probability & Statistics, Statistical Tests, General Statistics, R Programming, Statistical Programming, Bayesian Statistics, Data Analysis, Probability Distribution, Statistical Analysis, Bayesian Network, Business Analysis, Experiment, Machine Learning

      4.9

      (750 reseñas)

      Intermediate · Course · 1-3 Months

    • Placeholder

      Gratis

      Placeholder
      University of Zurich

      An Intuitive Introduction to Probability

      Habilidades que obtendrás: Probability & Statistics, Probability Distribution, General Statistics, Basic Descriptive Statistics, Bayesian Network, Bayesian Statistics, Data Analysis, Machine Learning

      4.8

      (1.5k reseñas)

      Beginner · Course · 1-3 Months

    • Placeholder
      Placeholder
      Databricks

      Introduction to Bayesian Statistics

      Habilidades que obtendrás: General Statistics, Probability & Statistics, Probability Distribution, Bayesian Statistics, Python Programming

      3.5

      (30 reseñas)

      Beginner · Course · 1-4 Weeks

    • Placeholder
      Placeholder
      University of California, Santa Cruz

      Bayesian Statistics: Time Series Analysis

      Habilidades que obtendrás: Probability & Statistics, Forecasting, General Statistics, Bayesian Statistics, R Programming

      4.0

      (6 reseñas)

      Intermediate · Course · 1-3 Months

    Búsquedas relacionadas con bayesian statistics

    bayesian statistics: from concept to data analysis
    bayesian statistics: time series analysis
    bayesian statistics: techniques and models
    bayesian statistics: mixture models
    bayesian statistics: capstone project
    introduction to bayesian statistics
    1234…10

    En síntesis, estos son los 10 cursos más populares bayesian statistics

    • Bayesian Statistics: University of California, Santa Cruz
    • Bayesian Statistics: From Concept to Data Analysis: University of California, Santa Cruz
    • Bayesian Statistics: Duke University
    • Data Science: Statistics and Machine Learning: Johns Hopkins University
    • Bayesian Statistics: Techniques and Models: University of California, Santa Cruz
    • Preparing for Google Cloud Certification: Machine Learning Engineer: Google Cloud
    • Introduction to Statistics: Stanford University
    • Data Science: Johns Hopkins University
    • Improving your statistical inferences: Eindhoven University of Technology
    • An Intuitive Introduction to Probability: University of Zurich

    Habilidades que puedes aprender en Probability And Statistics

    Programación R (19)
    Inferencia (16)
    Regresión Lineal (12)
    Análisis Estadístico (12)
    Inferencia Estadística (11)
    Análisis De La Regresión (10)
    Bioestadística (9)
    Bayesiana (7)
    Regresión Logística (7)
    Distribución De Probabilidad (7)
    Estadísticas Médicas (6)

    Preguntas frecuentes sobre Estadística bayesiana

    • Bayesian Statistics is an approach to statistics based on the work of the 18th century statistician and philosopher Thomas Bayes, and it is characterized by a rigorous mathematical attempt to quantify uncertainty. The likelihood of uncertain events is unknowable, by definition, but Bayes’s Theorem provides equations for the statistical inference of their probability based on prior information about an event - which can be updated based on the results of new data.

      While its origins lie hundreds of years in the past, Bayesian statistical approaches have become increasingly important in recent decades. The calculations at the heart of Bayesian statistics require intensive numerical integrations to solve, which were often infeasible before low-cost computing power became more widely accessible. But today, statisticians can evaluate integrals by running hundreds of thousands of simulation iterations with Markov chain Monte Carlo methods on an ordinary laptop computer.

      This new accessibility of computational power to quantify uncertainty has enabled Bayesian statistics to showcase its strength: making predictions. This capability is critical to many data science applications, and especially to the training of machine learning algorithms to create predictive analytics that assist with real-world decision-making problems. As with other areas of data science, statisticians often rely on R programming and Python programming skills to solve Bayesian equations.‎

    • Bayesian statistical approaches are essential to many data science and machine learning techniques, making an understanding of Bayes’ Theorem and related concepts essential to careers in these fields.

      If you wish to dive more deeply into the theoretical aspects of Bayesian statistics and the modeling of probability more generally, you can also pursue a career as a statistician. These experts may work in academia or the private sector, and usually have at least a master’s degree in mathematics or statistics. According to the Bureau of Labor Statistics, statisticians earn a median annual salary of $91,160.‎

    • Absolutely. Coursera gives you opportunities to learn about Bayesian statistics and related concepts in data science and machine learning through courses and Specializations from top-ranked schools like Duke University, the University of California, Santa Cruz, and the National Research University Higher School of Economics in Russia. You can also learn from industry leaders like Google Cloud, or through Coursera’s own exclusive Guided Projects, which let you build skills by completing step-by-step tutorials taught by expert instructors.

      Regardless of your needs, the combination of high-equality education, a flexible schedule, and low tuition costs leaves no uncertainty about the value of learning about Bayesian statistics on Coursera.‎

    • A background in statistics and certain areas of math, like algebra, can be extremely helpful when learning Bayesian statistics. This includes knowledge of and experience with statistical methods and statistical software. Any type of experience working with data, especially on a large scale, can also help. Classes, degrees, or work experience in biostatistics, psychometrics, analytics, quantitative psychology, banking, and public health can also be beneficial, especially if you plan to enter a career that centers around one of these topics or a related field. However, they aren't necessary for learning about Bayesian statistics in general.‎

    • People who aspire to work in roles that use Bayesian statistics should have analytical minds and a passion for using data to help other businesses and other people. You'll need good computer skills and a passion for statistics. You'll also need to be a good multitasker with excellent time management skills as well as someone who is highly organized. Good problem-solving skills are a must, as is flexibility. There are times when you may have total autonomy over your job and others when you're working with a team. That means you'll also need great interpersonal skills and the ability to communicate well, both verbally and in writing.‎

    • Anyone who works with data or seeks a career working with data may be interested in learning Bayesian statistics. Many companies that seek employees to work in fields involving statistics or big data prefer someone who understands and can implement the theories of Bayesian statistics to someone who can't. These companies typically offer competitive salaries and benefits and room for career advancement. Careers that may use Bayesian statistics also tend to have a good outlook for the future. Best of all, learning about this topic can open you up to jobs in numerous industries, ranging from banking and finance to health care and biostatistics.‎

    Se puso a disposición este contenido de preguntas frecuentes solo con fines informativos. Se les pide a los estudiantes que realicen investigaciones adicionales para asegurarse de que los cursos y otras credenciales cumplan con sus objetivos personales, profesionales y financieros.
    Otros temas para explorar
    Placeholder
    Artes y Humanidades
    338 cursos
    Placeholder
    Negocios
    1095 cursos
    Placeholder
    Ciencias de la Computación
    668 cursos
    Placeholder
    Ciencia de Datos
    425 cursos
    Placeholder
    Tecnología de información
    145 cursos
    Placeholder
    Salud
    471 cursos
    Placeholder
    Matemáticas y Lógica
    70 cursos
    Placeholder
    Desarrollo Personal
    137 cursos
    Placeholder
    Ciencias Físicas e Ingeniería
    413 cursos
    Placeholder
    Ciencias sociales
    401 cursos
    Placeholder
    Aprendizaje de un idioma
    150 cursos

    Coursera Footer

    Comienza o impulsa tu carrera profesional

    • Analista de datos de Google
    • Certificado profesional de comercio electrónico y marketing digital de Google
    • Certificado profesional de Automatización de TI de Google con Python
    • Soporte de TI de Google
    • Gestión de proyectos de Google
    • Diseño de experiencia del usuario (UX) de Google
    • Prepárate para una certificación en Google Cloud: arquitecto de la nube
    • Analista de ciberseguridad de IBM
    • Analista en datos de IBM
    • Ingeniería de Datos de IBM
    • Ciencia de datos de IBM
    • Desarrollador de la nube de pila completa de IBM
    • Aprendizaje automático de IBM
    • Contabilidad en Intuit
    • Desarrollador de front-end de Meta
    • Certificado profesional de DeepLearning.AI DeepLearning.AI desarrollador de TensorFlow
    • Certificado Profesional de Programador de SAS
    • Lanza tu carrera profesional
    • Prepárate para una certificación
    • Avanza en tu carrera
    • Cómo detectar errores de sintaxis en Python
    • Cómo descubrir excepciones en Python
    • Ver todos los tutoriales sobre programación

    Cursos y certificaciones populares

    • cursos gratuitos
    • Cursos en Inteligencia artificial
    • Cursos de Blockchain
    • Cursos de ciencias de la computación
    • Cursos gratis
    • Cursos de seguridad cibernética
    • Cursos de análisis de datos
    • Cursos de análisis de datos
    • Cursos de inglés oral
    • Cursos de desarrollo web de pila completa
    • Cursos de Google
    • Cursos de recursos humanos
    • Cursos de TI
    • Cursos de aprendizaje de inglés
    • Cursos de Microsoft Excel
    • Cursos de gestión de productos
    • Cursos de gestión de proyectos
    • Cursos de Python
    • Cursos de SQL
    • Certificaciones Agile
    • Certificados en Gestión de proyectos (CAPM)
    • Certificación CompTIA A+
    • Certificado de análisis de datos
    • Certificaciones de Scrum Master
    • Ver todos los cursos

    Colecciones y artículos populares

    • Cursos en línea gratis que puedes terminar en un día
    • Cursos gratuitos populares
    • Empleos en negocios
    • Empleos de seguridad cibernética
    • Trabajos de nivel principiante en TI
    • Preguntas de entrevista de análisis de datos
    • Proyectos de análisis de datos
    • Cómo convertirse en analista de datos
    • Cómo convertirse en gerente de proyectos
    • Habilidades de TI
    • Preguntas de entrevista de gerente de proyectos
    • Habilidades en programación Python
    • Puntos fuertes y débiles en la entrevista
    • Qué hace un analista de datos
    • Qué hace un ingeniero de software
    • Qué es un ingeniero de datos
    • Qué es un científico de datos
    • Qué es un diseñador de productos
    • Qué es un Scrum Master
    • Qué es un investigador de UX
    • Cómo obtener una certificación PMP
    • Certificaciones PMI
    • Certificaciones populares en Seguridad Cibernética
    • Certificaciones populares en SQL
    • Leer todos los artículos de Coursera

    Obtén un título de grado o un certificado en línea

    • Certificados profesionales de Google
    • Certificados profesionales
    • Ver todos los certificados
    • Licenciaturas
    • Maestrías
    • Títulos en ciencias informáticas
    • Títulos de grado en ciencias de los datos
    • MBA y títulos de grado en negocios
    • Títulos de grado en Análisis de datos
    • Títulos de grado en salud pública
    • Títulos de grado en Ciencias Sociales
    • Títulos de grado en administración
    • Programas con título de grado de licenciatura en Arte versus licenciatura en Ciencias
    • ¿Qué es una licenciatura?
    • Los 11 buenos hábitos de estudio para desarrollar
    • Cómo escribir una carta de recomendación
    • Los 10 empleos más demandados con un programa de grado en Negocios
    • ¿Vale la pena hacer una Maestría en Ciencias informáticas?
    • Ver todos los programas de grado
    • Coursera India
    • Coursera Reino Unido
    • Coursera México

    Coursera

    • Acerca de
    • Qué ofrecemos
    • Liderazgo
    • Carreras profesionales
    • Catálogo
    • Coursera Plus
    • Certificados profesionales
    • MasterTrack® Certificates
    • Título de grados
    • Para Empresas
    • Para gobiernos
    • Para el campus
    • Conviértete en socio
    • En respuesta al Coronavirus

    Comunidad

    • Estudiantes
    • Socios
    • Probadores beta
    • Traductores
    • Blog
    • Blog de Tecnología
    • Centro de enseñanza

    Más

    • Prensa
    • Inversores
    • Términos
    • Privacidad
    • Ayuda
    • Accesibilidad
    • Contacto
    • Artículos
    • Directorio
    • Afiliados
    • Declaración de Esclavitud Moderna
    Aprende en cualquier lado
    Placeholder
    Placeholder
    Placeholder
    © 2023 Coursera Inc. Todos los derechos reservados.
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder