In this capstone, learners will apply their deep learning knowledge and expertise to a real world challenge. They will use a library of their choice to develop and test a deep learning model. They will load and pre-process data for a real problem, build the model and validate it. Learners will then present a project report to demonstrate the validity of their model and their proficiency in the field of Deep Learning.
ofrecido por

Acerca de este Curso
ofrecido por

IBM
IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world's most advanced servers and supercomputers. Utilizing its business consulting, technology and R&D expertise, IBM helps clients become "smarter" as the planet becomes more digitally interconnected. IBM invests more than $6 billion a year in R&D, just completing its 21st year of patent leadership. IBM Research has received recognition beyond any commercial technology research organization and is home to 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards, and 10 Inductees in US Inventors Hall of Fame.
Programa - Qué aprenderás en este curso
Module 1 - Loading Data
In this module, you will get introduced to the problem that we will try to solve throughout the course. You will also learn how to load the image dataset, manipulate images, and visualize them.
Module 2
In this Module, you will mainly learn how to process image data and prepare it to build a classifier using pre-trained models.
Module 3
In this Module, in the PyTorch part, you will learn how to build a linear classifier. In the Keras part, you will learn how to build an image classifier using the ResNet50 pre-trained model.
Module 4
In this Module, in the PyTorch part, you will complete a peer review assessment where you will be asked to build an image classifier using the ResNet18 pre-trained model. In the Keras part, for the peer review assessment, you will be asked to build an image classifier using the VGG16 pre-trained model and compare its performance with the model that we built in the previous Module using the ResNet50 pre-trained model.
Reseñas
Principales reseñas sobre AI CAPSTONE PROJECT WITH DEEP LEARNING
The capstone of the project was really good it helped me to understand the deep learning concepts clearly for providing the solution.
I like the flexibility to pick our framework for the project i wish the kers one were a little bit more challenging
A very nice project based course to get hands on experience with deep learning and transfer learning.
The Course is good, The labs were crashing which were causing lot of issues in completing the course
Acerca de Certificado profesional de IBM AI Engineering
Artificial intelligence (AI) is revolutionizing entire industries, changing the way companies across sectors leverage data to make decisions. To stay competitive, organizations need qualified AI engineers who use cutting-edge methods like machine learning algorithms and deep learning neural networks to provide data driven actionable intelligence for their businesses. This 6-course Professional Certificate is designed to equip you with the tools you need to succeed in your career as an AI or ML engineer.

Preguntas Frecuentes
¿Cuándo podré acceder a las lecciones y tareas?
¿Qué recibiré si me suscribo a este Certificado?
¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.