Acerca de este Curso
2,837 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 9 horas para completar

Sugerido: 4 weeks of study, 2-5 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 9 horas para completar

Sugerido: 4 weeks of study, 2-5 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
2 horas para completar

Solving the Business Problems

In this module, you will explain why comparing healthcare providers with respect to quality can be beneficial, and what types of metrics and reporting mechanisms can drive quality improvement. You'll recognize the importance of making quality comparisons fairer with risk adjustment and be able to defend this methodology to healthcare providers by stating the importance of clinical and non-clinical adjustment variables, and the importance of high-quality data. You will distinguish the important conceptual steps of performing risk-adjustment; and be able to express the serious nature of medical errors within the US healthcare system, and communicate to stakeholders that reliable performance measures and associated interventions are available to help solve this tremendous problem. You will distinguish the traits that help categorize people into the small group of super-utilizers and summarize how this population can be identified and evaluated. You'll inform healthcare managers how healthcare fraud differs from other types of fraud by illustrating various schemes that fraudsters use to expropriate resources. You will discuss analytical methods that can be applied to healthcare data systems to identify potential fraud schemes.

...
8 videos (Total 61 minutos), 1 reading, 1 quiz
8 videos
Module 1 Introduction3m
Provider Profiling10m
How to Make Fairer Comparisons Using Risk Adjustment6m
How Risk Adjustment is Performed8m
Patient Safety: Measuring Adverse Events7m
Super-Utilizers of Health Resources10m
Fraud Detection10m
1 lectura
A Note From UC Davis10m
1 ejercicio de práctica
Module 1 Quiz30m
Semana
2
2 horas para completar

Algorithms and "Groupers"

In this module, you will define clinical identification algorithms, identify how data are transformed by algorithm rules, and articulate why some data types are more or less reliable than others when constructing the algorithms. You will also review some quality measures that have NQF endorsement and that are commonly used among health care organizations. You will discuss how groupers can help you analyze a large sample of claims or clinical data. You'll access open source groupers online, and prepare an analytical plan to map codes to more general and usable diagnosis and procedure categories. You will also prepare an analytical plan to map codes to more general and usable analytical categories as well as prepare a value statement for various commercial groupers to inform analytic teams what benefits they can gain from these commercial tools in comparison to the licensing and implementation costs.

...
7 videos (Total 51 minutos), 1 quiz
7 videos
Clinical Identification Algorithms (CIA)9m
HEDIS and AHRQ Quality Measures7m
Analytical Groupers6m
Open Source Groupers - Grouping Diagnoses and Procedures7m
Open Source Groupers - Comorbidity, Patient Risk, and Drugs8m
Commercial Groupers10m
1 ejercicio de práctica
Module 2 Quiz30m
Semana
3
3 horas para completar

ETL (Extract, Transform, and Load)

In this module, you will describe logical processes used by database and statistical programmers to extract, transform, and load (ETL) data into data structures required for solving medical problems. You will also harmonize data from multiple sources and prepare integrated data files for analysis.

...
6 videos (Total 49 minutos), 1 quiz
6 videos
Analytical Processes and Planning10m
Data Mining and Predictive Modeling - Part 16m
Data Mining and Predictive Modeling - Part 26m
Extracting Data for Analysis10m
Transforming Data for Analytical Structures11m
1 ejercicio de práctica
Module 3 Quiz30m
Semana
4
5 horas para completar

From Data to Knowledge

In this module, you will describe to an analytical team how risk stratification can categorize patients who might have specific needs or problems. You'll list and explain the meaning of the steps when performing risk stratification. You will apply some analytical concepts such as groupers to large samples of Medicare data, also use the data dictionaries and codebooks to demonstrate why understanding the source and purpose of data is so critical. You will articulate what is meant by the general phase -- “Context matters when analyzing and interpreting healthcare data.” You will also communicate specific questions and ideas that will help you and others on your analytical team understand the meaning of your data.

...
7 videos (Total 49 minutos), 1 reading, 2 quizzes
7 videos
Solving Analytical Problems with Risk Stratification8m
Risk Stratification: Variables, Groupers, Predictors8m
Risk Stratification: Model Creation/Evaluation and Deployment of Strata9m
Medicare Claims Data - Source and Documentation8m
Final Tips to Help Understand and Interpret Healthcare Data8m
Course Summary2m
1 lectura
Welcome to Peer Review Assignments!10m
1 ejercicio de práctica
Module 4 Quiz30m

Instructor

Avatar

Brian Paciotti

Healthcare Data Scientist
Research IT

Acerca de Universidad de California, Davis

UC Davis, one of the nation’s top-ranked research universities, is a global leader in agriculture, veterinary medicine, sustainability, environmental and biological sciences, and technology. With four colleges and six professional schools, UC Davis and its students and alumni are known for their academic excellence, meaningful public service and profound international impact....

Acerca del programa especializado Health Information Literacy for Data Analytics

This Specialization is intended for data and technology professionals with no previous healthcare experience who are seeking an industry change to work with healthcare data. Through four courses, you will identify the types, sources, and challenges of healthcare data along with methods for selecting and preparing data for analysis. You will examine the range of healthcare data sources and compare terminology, including administrative, clinical, insurance claims, patient-reported and external data. You will complete a series of hands-on assignments to model data and to evaluate questions of efficiency and effectiveness in healthcare. This Specialization will prepare you to be able to transform raw healthcare data into actionable information....
Health Information Literacy for Data Analytics

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.