Chevron Left
Volver a Machine Learning in the Enterprise

Opiniones y comentarios de aprendices correspondientes a Machine Learning in the Enterprise por parte de Google Cloud

1,406 calificaciones

Acerca del Curso

This course encompasses a real-world practical approach to the ML Workflow: a case study approach that presents an ML team faced with several ML business requirements and use cases. This team must understand the tools required for data management and governance and consider the best approach for data preprocessing: from providing an overview of Dataflow and Dataprep to using BigQuery for preprocessing tasks. The team is presented with three options to build machine learning models for two specific use cases. This course explains why the team would use AutoML, BigQuery ML, or custom training to achieve their objectives. A deeper dive into custom training is presented in this course. We describe custom training requirements from training code structure, storage, and loading large datasets to exporting a trained model. You will build a custom training machine learning model, which allows you to build a container image with little knowledge of Docker. The case study team examines hyperparameter tuning using Vertex Vizier and how it can be used to improve model performance. To understand more about model improvement, we dive into a bit of theory: we discuss regularization, dealing with sparsity, and many other essential concepts and principles. We end with an overview of prediction and model monitoring and how Vertex AI can be used to manage ML models....

Principales reseñas


30 de dic. de 2018

thanks for the great work. There is so much to learn and I appreciate the effort you made to break things down and providing lab while making the hard decisions on what to commit.


6 de jun. de 2020

This course is so really good to learn about the general knowledge and skill of Data Science like optimization batch or regularization and so on with Google Cloud Platform.

Filtrar por:

76 - 100 de 120 revisiones para Machine Learning in the Enterprise

por Naman M

19 de ago. de 2019

por Kamlesh C

13 de jun. de 2020

por Somaiya J G

14 de nov. de 2018

por Gustavo M

17 de ago. de 2018

por Phạm V T

17 de abr. de 2020

por Manish K

28 de ago. de 2019

por MOHD N B A L

24 de nov. de 2020

por Dr. P S J

25 de jul. de 2020

por Balasubramanian T K

13 de abr. de 2020


3 de dic. de 2019

por Mirza s N

18 de sep. de 2019

por Fathima j

11 de may. de 2019

por Bielushkin M

23 de nov. de 2018

por Atichat P

4 de jun. de 2018

por Fuat A

20 de mar. de 2020

por Randall B

25 de ago. de 2022

por Carlos V

1 de jul. de 2018

por Robert L

7 de abr. de 2020

por Vishal K

15 de jul. de 2018

por Yuan L

17 de abr. de 2021

por Phillip

16 de ago. de 2020

por Manish G

30 de jul. de 2019

por Phac L T

1 de ago. de 2018

por Oleg O

20 de oct. de 2018

por Joel M

12 de dic. de 2018