Acerca de este Curso

35,111 vistas recientes
Certificado para compartir
Obtén un certificado al finalizar
100 % en línea
Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles
Restablece las fechas límite en función de tus horarios.
Nivel intermedio
Aprox. 13 horas para completar
Español (Spanish)
Subtítulos: Español (Spanish)
Certificado para compartir
Obtén un certificado al finalizar
100 % en línea
Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles
Restablece las fechas límite en función de tus horarios.
Nivel intermedio
Aprox. 13 horas para completar
Español (Spanish)
Subtítulos: Español (Spanish)

ofrecido por

Logotipo de Universitat Autònoma de Barcelona

Universitat Autònoma de Barcelona

Programa - Qué aprenderás en este curso

Semana
1

Semana 1

1 hora para completar

INTRODUCCIÓN

1 hora para completar
2 videos (Total 10 minutos), 8 lecturas
2 videos
Presentación del curso6m
8 lecturas
Bienvenida1m
Contenidos del curso (Temario)1m
Organización del curso y evaluación5m
Sobre el certificado2m
FAQs - Generales10m
FAQs - Cuestionarios y ejercicios2m
FAQs - Certificado10m
Enlaces relacionados1m
1 hora para completar

LA MÁQUINA VIRTUAL

1 hora para completar
4 videos (Total 16 minutos), 4 lecturas
4 videos
Instalación de la máquina virtual - Import start4m
Instalación de la máquina virtual - Tips3m
Instalación de la máquina virtual - Pyspark setup4m
4 lecturas
Link para la descarga de la MV_Cloudera10m
Instalación de la MV - Import start10m
Instalación de la MV - Tips10m
Instalación de la MV - Pyspark setup10m
2 minutos para completar

MATERIAL DE PRÁCTICAS Y FICHEROS DE TRABAJO

2 minutos para completar
2 lecturas
2 lecturas
FICHEROS DE TRABAJO Y PAQUETES - IMPORTANTE1m
INICIO DE LA SESIÓN - IMPORTANTE1m
2 horas para completar

MÓDULO 1 - Análisis Exploratorio de Datos

2 horas para completar
10 videos (Total 84 minutos)
10 videos
Datos - Fuentes de información4m
Distintos problemas y técnicas8m
Caso de estudio y herramientas4m
Introducción a Jupyter Notebook y Pyspark (S1E4.ipynb)5m
Exploración de la estructura de datos (S1E5.ipynb)14m
Primera etapa del análisis exploratorio (S1E6.ipynb)11m
Preproceso de datos (I) - (S1E7.ipynb)11m
Preproceso de datos (II) - (S1E8.ipynb)6m
Segunda etapa del análisis exploratorio (S1E9.ipynb)14m
6 ejercicios de práctica
Cuestionario 110m
Cuestionario 210m
Cuestionario 310m
Cuestionario 410m
Cuestionario 510m
Cuestionario 610m
Semana
2

Semana 2

3 horas para completar

MÓDULO 2 - MODELOS DE REGRESIÓN

3 horas para completar
10 videos (Total 89 minutos)
10 videos
Objetivo de la Modelización8m
Calibración del modelo10m
Resultado de la Modelización11m
Regresión Simple (S2E4.ipynb)11m
Nuevas variables (S2E5.ipynb)8m
Regresión Múltiple (I) (S2E6.ipynb)7m
Regresión Múltiple (II) (S2E7.ipynb)11m
Regresión Logística (I) (S2E8.ipynb)8m
Regresión Logística (II) (S2E9.ipynb)10m
7 ejercicios de práctica
Cuestionario 110m
Cuestionario 210m
Cuestionario 310m
Cuestionario 410m
Cuestionario 510m
Cuestionario 610m
Cuestionario 710m
Semana
3

Semana 3

3 horas para completar

MÓDULO 3 - ÁRBOLES DE REGRESIÓN Y CLASIFICACIÓN

3 horas para completar
10 videos (Total 89 minutos)
10 videos
Introducción a la Modelización5m
Medir la Incertidumbre10m
Concepto de Árbol8m
Árboles de Regresión11m
Modelización con Árboles de Regresión (S3E5.ipynb)9m
Árboles de Clasificación9m
Modelización con Árboles de Clasificación (S3E7.ipynb)9m
Bosques Aleatorios14m
Modelización con Bosques Aleatorios (S3E9.ipynb)9m
7 ejercicios de práctica
Cuestionario 18m
Cuestionario 210m
Cuestionario 310m
Cuestionario 410m
Cuestionario 510m
Cuestionario 610m
Cuestionario 710m
Semana
4

Semana 4

3 horas para completar

MÓDULO 4 - REDES NEURONALES Y TÉCNICAS NO SUPERVISADAS

3 horas para completar
10 videos (Total 75 minutos), 1 lectura, 7 cuestionarios
10 videos
Redes Neuronales12m
Modelización con redes neuronales (S4E2.ipynb)6m
Introducción al reconocimiento de patrones5m
Reducción dimensión11m
Análisis de componentes principales (S4E6.ipynb)10m
Clasificación automática8m
Análisis de clústers (S4E8.ipynb)7m
Revisión de la ciencia de datos (I)5m
Revisión de la ciencia de datos (II)6m
1 lectura
TRABAJO PRÁCTICO - Enunciado30m
7 ejercicios de práctica
Cuestionario 110m
Cuestionario 210m
Cuestionario 310m
Cuestionario 410m
Cuestionario 510m
Cuestionario 610m
Cuestionario del Ejercicio Práctico30m

Revisiones

Principales revisiones sobre BIG DATA: PROCESAMIENTO Y ANÁLISIS

Ver todos los comentarios

Acerca de Programa especializado: Big Data – Introducción al uso práctico de datos masivos

Este programa está pensado como una entrada al mundo de los datos masivos y su tratamiento. El primer curso tiene como objetivo mostrar al estudiante el impacto del Big Data en la sociedad actual, tanto en el mundo de los negocios como en el de la política y administraciones públicas, los medios de comunicación y/o la investigación científica. A lo largo de los cursos 2, 3 y 4 se estudian la identificación, captura, pre-procesamiento, análisis y visualización de datos, desde un punto de vista “usuario”, y con una orientación práctica. Finalmente, el Capstone Project permite al estudiante aplicar los conocimientos adquiridos a un caso práctico del campo de la astronomía. Al finalizar los cursos de esta especialización el estudiante será capaz de: 1. Entender el impacto del tratamiento de datos masivos en la sociedad actual. 2. Entender y explicar la procedencia y características de los datos masivos. 3. Adquirir, preparar, almacenar, analizar, visualizar y manejar grandes conjuntos de datos. 4. Extraer información de los datos. 5. Trabajar dentro del ecosistema Hadoop. 6. Contestar a una pregunta bien formulada en función de la información disponible. Contamos con un conjunto maravilloso de profesores, con una gran experiencia en el tema, provenientes tanto de la universidad como de la empresa. Necesitarás una computadora de 64bits que permita virtualizacion, con un mínimo de 6G de RAM (8G recomendable) y 20G disponibles en disco....
Big Data – Introducción al uso práctico de datos masivos

Preguntas Frecuentes

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.