In most cases, the ultimate goal of a machine learning project is to produce a model. Models make decisions, predictions—anything that can help the business understand itself, its customers, and its environment better than a human could. Models are constructed using algorithms, and in the world of machine learning, there are many different algorithms to choose from. You need to know how to select the best algorithm for a given job, and how to use that algorithm to produce a working model that provides value to the business.
Este curso forma parte de Certificado profesional de Profesional en Inteligencia Artificial certificado por CertNexus
Ofrecido Por

Acerca de este Curso
ML workflow knowledge is required, as is experience with Python or similar languages. Basic knowledge of math and statistics is also recommended.
Qué aprenderás
Train and evaluate linear regression models.
Train binary and multi-class classification models.
Evaluate and tune classification models to improve their performance.
Train and evaluate clustering models to find useful patterns in unsupervised data.
Habilidades que obtendrás
- Machine Learning
- clustering
- classification
- Linear Regression
- Machine Learning (ML) Algorithms
ML workflow knowledge is required, as is experience with Python or similar languages. Basic knowledge of math and statistics is also recommended.
Ofrecido por
Programa - Qué aprenderás en este curso
Build Linear Regression Models Using Linear Algebra
Build Regularized and Iterative Linear Regression Models
Train Classification Models
Evaluate and Tune Classification Models
Acerca de Certificado profesional de Profesional en Inteligencia Artificial certificado por CertNexus

Preguntas Frecuentes
¿Cuándo podré acceder a las lecciones y tareas?
¿Qué recibiré si me suscribo a este Certificado?
¿Cuál es la política de reembolsos?
¿Tienes más preguntas? Visita el Centro de Ayuda al Estudiante.