Overview of the main principles of Deep Learning along with common architectures. Formulate the problem for time-series classification and apply it to vital signals such as ECG. Applying this methods in Electronic Health Records is challenging due to the missing values and the heterogeneity in EHR, which include both continuous, ordinal and categorical variables. Subsequently, explore imputation techniques and different encoding strategies to address these issues. Apply these approaches to formulate clinical prediction benchmarks derived from information available in MIMIC-III database.
Este curso forma parte de Programa especializado: Informed Clinical Decision Making using Deep Learning
Ofrecido Por


Acerca de este Curso
Python programming and experience with scientific packages such as numpy, scipy and matplotlib.
Qué aprenderás
Train deep learning architectures such as Multi-layer perceptron, Convolutional Neural Networks and Recurrent Neural Networks for classification
Validate and compare different machine learning algorithms
Preprocess Electronic Health Records and represent them as time-series data
Imputation strategies and data encodings
Habilidades que obtendrás
- preprocessing of EHR and imputation
- Convolutional Neural Network
- deep learning and validation
- Recurrent Neural Network
- data encodings and autoencoders
Python programming and experience with scientific packages such as numpy, scipy and matplotlib.
Ofrecido por
Programa - Qué aprenderás en este curso
Artificial Intelligence and Multi-Layer Perceptron
Convolutional and Recurrent Neural Networks.
Preprocessing and imputation of MIMIC III data
EHR Encodings for machine learning models
Acerca de Programa especializado: Informed Clinical Decision Making using Deep Learning

Preguntas Frecuentes
¿Cuándo podré acceder a las lecciones y tareas?
¿Qué recibiré si me suscribo a este Programa especializado?
¿Hay ayuda económica disponible?
¿Tienes más preguntas? Visita el Centro de Ayuda al Estudiante.