Chevron Left
Volver a Convolutional Neural Networks

Opiniones y comentarios de aprendices correspondientes a Convolutional Neural Networks por parte de deeplearning.ai

4.9
estrellas
29,349 calificaciones
3,593 revisiones

Acerca del Curso

This course will teach you how to build convolutional neural networks and apply it to image data. Thanks to deep learning, computer vision is working far better than just two years ago, and this is enabling numerous exciting applications ranging from safe autonomous driving, to accurate face recognition, to automatic reading of radiology images. You will: - Understand how to build a convolutional neural network, including recent variations such as residual networks. - Know how to apply convolutional networks to visual detection and recognition tasks. - Know to use neural style transfer to generate art. - Be able to apply these algorithms to a variety of image, video, and other 2D or 3D data. This is the fourth course of the Deep Learning Specialization....

Principales revisiones

RS

Dec 12, 2019

Great Course Overall\n\nOne thing is that some videos are not edited properly so Andrew repeats the same thing, again and again, other than that great and simple explanation of such complicated tasks.

AG

Jan 13, 2019

Great course for kickoff into the world of CNN's. Gives a nice overview of existing architectures and certain applications of CNN's as well as giving some solid background in how they work internally.

Filtrar por:

51 - 75 de 3,573 revisiones para Convolutional Neural Networks

por David R R

Nov 28, 2017

This is a very interesting and functional course. Week 1 gives you the basic ideas behind CNN and it is very easy to follow the videos. The next weeks gives you what are under the hood in object detection systems, other CNN architectures, style use... I recommend this course

Este es un curso interesante y sobre todo funcional. La primera semana te enseña las ideas básicas detras de un CNN ademas de que son lecturas faciles de seguir. Las siguientes semanas te enseñan los "secretos" de los sitemas de detección de objetos, otras arquitecturas de CNN, uso artistico de las mismas... Recomiendo el curso

por Sourab M

Dec 03, 2018

One of the best courses for learning deep learning concepts for computer vision. It provides a deep understanding of convolutional neural networks and the various architectures used by state-of-the-art models. We get to learn various concepts of computer vision - image classification, localization, image detection, face verification, face recognition and neural style transfer. Ii would have been better if course also covered image segmentation. We get much needed hands-on through interesting assignments and along the way we get to learn Tensorflow and Keras. Thank you for this great course :)

por Ayush T

Mar 02, 2018

Like the other courses of this series, this course is really good. In this tutorial I have not only understood how to implement things but I have also learnt what's the math behind those things. It is important at-least for me because it allows me to do more experiments with CNN's or in general Neural Networks. The thing which I like most about this course is its programming exercises.

I recommend this whole series to those people who want to learn some advance machine learning stuff like GAN, variational autoencoders and Reinforcement learning. This series will help as a strong foundation.

por Yilun Y

Apr 06, 2019

Overall an awesome course, however, it somewhat lacks some important topics and models such as SSD, Faster RCNN, mask RCNN, etc which are even more frequently mentioned in literature and applied in real world projects. This course really sparked my curiosity and passion in deep learning, I actually learned the models mentioned before by reading the original paper and many useful blogs. This is a long but rewarding journey, I would also like to see more topics be covered in this course and let more people know how these state-of-art models work and how they really change the world.

por Xiang J

Nov 04, 2019

I really like this course, because it not only taught me the exciting new topics that I always want to learn, such as object detection algorithm and neural style transfer, but also it gave a solid introduction to the concepts of convolution. The assignments are great, it is fun to do and it also helped me more concretely understand the materials of main course. As to further improve the course, may be it would be nice to build a whole end-to-end pipeline including training the main convolution model in car detection as I know in Google colab even public users have access to GPUs.

por Mukund C

Oct 15, 2019

Loved it!! Loved it!! Loved it!! I wish there was a little bit more engagement from mentor side as well as updates on the coursework with the latest developments in the object detection field. I also wish that there were a little bit more involved programming exercises, maybe one in "training" where one has to label objects and "train" a neural net. One of the things that I missed in the course is an explanation of the Neural Network architectures and why they work - e.g. the VCCG-16 or Inception Network - for example. Maybe one has to read the papers to understand them?

por Shankar G

Jul 08, 2018

This part of the CNNs course in DL was awesome and long enough. It started with foundations of CNNs, where the concepts of CNNs layers was made very clear. Programming assignments helped understanding the layering activation properly. The good part was DeepCNNs case studies explanation with its pros and cons, plus the practical advice for using ConvNets. Also this course provided few papers applications like object detection, face recognition and neural style transfer which was amazing. All the quizzes and programming assignments refreshed the concepts in a good manner.

por Abhilash V

Apr 19, 2018

This course covers the basics of convolutional neural networks , resnets, inception nets, yolo, style transfer, face recognition.The programming assignments mostly for yolo and face recognition is done with transfer learning , i think its only fair as they are computationally expensive to train.I am confident about all the materials covered in this course Andrew Ng as always breaks down the problem to the basics so you can understand them.Its a great course if you want to know and implement the well known computer vision problems with the well known algorithms.

por Alouini M Y

Dec 26, 2017

This course helped me consolidate my computer vision knowledge. In fact, I had some prior experience but felt left behind given the current rapid advancements in the field of computer vision (thanks to deep learning mostly). The material is up-to-date and the assignments (especially the notebooks) are very pleasant. I have learned a lot of modern CV techniques: YOLO for image detection and localisation, style transfer, face verificiation with DeepFace, and many more. I recommend to anyone that is serious (or at least curious) about modern CV techniques.

por Jeffrey S

Apr 10, 2018

I had a tough time on the programming exercises - mostly due to poor Python/Numpy/Tensorflow experience. I did find the material really interesting. The teaching style is great - much better than other courses on AI I've started. Andrew is terrific and pleasant to learn from. While totally different from the megastar CS50 (EdX) approach, he manages to make a complicated subject understandable. I have my list of subjects I need to go back and review, but I really feel like I've gotten a good perspective on the Deep Learning field from these courses.

por Jairo J P H

Feb 01, 2020

El curso es muy bueno, particularmente estoy muy agradecido con COURSERA, por darme la oportunidad de hacer los cinco cursos de la Especialización en Deep Learning con ayuda economica y permitirme tener acceso a este tipo de capacitacion y certificacion. Muchas Gracias…!

The course is very good, particularly I am very grateful to COURSERA, for giving me the opportunity to do the five courses of the Deep Learning Specialization with financial aid and allowing me to have access to this type of training and certification. Thank you very much!

por Martin K

Jan 15, 2019

Andrews unique way of presenting complex theoretical concepts in a compelling and easy to understand manner was essential for my learning success. Attending this course was fun. Even though the programming assignments were pretty tough in this course (for me the toughest of all the courses in the deep learning specialization), I managed to complete this course in (my) record time. This might be mostly due to the understanding of the underlying mathematical concepts which were outstandingly well presented.

Totally recommend this course!

por David A G

Mar 16, 2018

The course was excellent. I really enjoy Andrew Ng's courses: complex stuff made easy and lots of practical applications.

The only thing that I would try to improve is the time the staff dedicates to check the forum to solve student's questions. I personally got stuck at one of the quizzes and it was hard to find any clue that might help to understand the right answer. Also, some really interesting general questions on the forum were not replied by anyone. I'm sure some expert help on the forum would bring great value to the course.

por Marcel M

Jun 30, 2018

For an engineering discipline, there is nothing better than employing the latest state-of-the-art techniques in solving real-life problems. That's the inherent value of this course the fact that you learn how Deep Learning is having an impact on so, so.. many, diverse areas such as Self-Driving Cars, Object Detection, Localization, Classification, Verification, Recognition and much, more. I highly recommend this course to anyone who wants to be an adept Deep Learning Practitioner. Kudos! Team DeepLearning AI. Keep up the good work!

por J K

Feb 25, 2018

The best course (yet). A good balance between theory and practice, although the complete lack of TensorFlow and Keras fundamentals can be a bit frustrating. Additionally, the use of numpy operations (add, multiply and such) gave the impression that you'd correctly done a function assignment (the check values were OK), however, the grader failed to accept it as being correct (which was justified), however, an indication that it was incorrect (or some comments in the accompanying text) would've saved me 30 minutes of searching.

por Ahmed E S A H

Nov 13, 2017

This course is very good. But i hope, after the course's weeks end, to add one more section to explain the recent publications and the most important challenges in the course field. In my opinion, this section will help the researcher to find a path to start research in course topic and try to find a new contributions that can help them specially if there are new master's or PhD students, they can figure out quickly where to start there research topics.

Thank you for your great effort and i hope i can learn more via Coursera.

por Asif M

Dec 04, 2017

Its a very complicated topic and Andrew Ng and his team have made it very easy for us to learn the core concepts and easily do the programming exercises. Needless to say, we need to spend some additional time outside the course if you want to get a deeper understanding of the topic as well as learn more about the nuances of pre-processing and loading data/models abstracted away by the utilities as well as the detailed instructions in the exercises.

PS: The discussion forum is super helpful, especially when you need some help.

por Virginia

Feb 24, 2019

The course is a perfect balance between theoretical explanations, application in programming and tips that can be helpful if you intend to work with CNN. I had not seen CNN before, and I didn't feel lost at any moment. Every doubt I had was perfectly answered in the forum. You don't need much of an experience with TensorFlow or Keras to do the labs, which are accompanied by thorough explanations of what is required; on the other hand, there are "extra" tasks for people who want to go more into depth in each lab.

por Vincent F

Feb 08, 2018

Overall a very good course for the instruction. Found only two omissions with the programming assignment notebooks. One was where a function expected a tensor but the parameter we were encouraged to provide was an array. Had to use a convert to tensor call. The other was a mismatch between the expected output block and the grader. This has been noted already but has not yet been fixed. But quite minor all in all.

Really liked the links to the academic papers that are the source of the models used. Thanks again.

por Maximiliano B

Jan 02, 2020

In this module of the specialization, you will be familiar with several types of convolutional neural networks and how do they work in details. Compared to the previous modules, this one requires more time due to the complexity of the subject as well as the programming assignments that are more difficult. After this course you feel comfortable to read all the papers covered as references throughout the course . Moreover, Professor Andrew NG explains the content clearly and it is a pleasure to watch his videos.

por Jose M L

Dec 07, 2017

Needs a few corrections on the last week's assignment. Other than that great course. I recommend people to go deeper (no pun intended) in learning Tensorflow and Keras by self studying via other resources (books, videos, tutorials) since the programming material is too extensive to teach in a course like this which seems intended to master the basic concepts and the most important results in convnets. Thank to Andrew and the TAs for an excellent course. See you all in the Sequence Models and last course!

por Kai-Peter M

Oct 28, 2019

Great course!!! The best online course I have ever taken! I enjoyed almost every day I participated in that course, really an educational treasure! It is so comprehensive and detailed at the same time. Due to the good presentation of the topics it was really understandable. The only thing I would wish for future participants: please make it easier to get the complete Jupyter notebook environments from the Coursera platform once completed. I spent a lot of time here - even after consuming the related blogs.

por Matthew B

Jan 01, 2018

Great course. Brilliant overview of CNN with recent implementations. I understand the limitations of covering only so much material in 4 weeks. Wish the course could have gone deeper on training YOLO. I had to do this myself from the darknet website with some other tutorials. Something to consider, implementations of Unet and Mask RCNN may be even more useful for precise object masking/detection rather than bounding box in the future. May be worth mentioning these techniques as they develop further.

por Shehryar M K K

Apr 30, 2018

This is the 4th course in the series of deep learning that I finished. It was very enjoyable. The topic is deep and the instructor referred to papers and their implementation as exercises. Inception networks and ResNet exercises were my favorite and I learned a lot from them. The other assignments were good but weren't enjoyable as the two mentioned above. I would suggest the instructor incorporates some reading materials in the course which can be tested in the quizzes. Thank you for making this course.

por Aniruddha S H

Mar 31, 2019

Excellent course. This covers almost everything you need to know about computer vision. starting with how Kernels detect edges, how convolutions work all the way to Object detection, face recognition, style transfer. This also includes references to some important deep learning papers which you must read. Programming assignments really help to understand the concept. but, some assignments are not clear and dimensions are confusing. Successful submission is a relief :P. Overall an Exceptional experience.