Chevron Left
Volver a Convolutional Neural Networks

Opiniones y comentarios de aprendices correspondientes a Convolutional Neural Networks por parte de deeplearning.ai

4.9
estrellas
29,349 calificaciones
3,593 revisiones

Acerca del Curso

This course will teach you how to build convolutional neural networks and apply it to image data. Thanks to deep learning, computer vision is working far better than just two years ago, and this is enabling numerous exciting applications ranging from safe autonomous driving, to accurate face recognition, to automatic reading of radiology images. You will: - Understand how to build a convolutional neural network, including recent variations such as residual networks. - Know how to apply convolutional networks to visual detection and recognition tasks. - Know to use neural style transfer to generate art. - Be able to apply these algorithms to a variety of image, video, and other 2D or 3D data. This is the fourth course of the Deep Learning Specialization....

Principales revisiones

RS

Dec 12, 2019

Great Course Overall\n\nOne thing is that some videos are not edited properly so Andrew repeats the same thing, again and again, other than that great and simple explanation of such complicated tasks.

AG

Jan 13, 2019

Great course for kickoff into the world of CNN's. Gives a nice overview of existing architectures and certain applications of CNN's as well as giving some solid background in how they work internally.

Filtrar por:

76 - 100 de 3,573 revisiones para Convolutional Neural Networks

por Waleed A

Dec 01, 2017

As someone who is studying AI and Neural Networks for the first time, I can say that this course was a very enjoyable experience for me. The structure of the information content makes the learning experience all the more valuable, and makes the learner yearn for more. Compared to the previous 3 courses, this course gives a little more mobility in terms of thought process and problem solving by introducing Keras, and allowing the learner to play around with models. All in all, it was well worth the time!

por Brian L

Nov 01, 2018

Great stuff! I have some background in image and signal processing and the mathematical properties of convolutions; so I it made sense to me that they would be useful in deep learning for image processing. However, that point was amplified for me when Andrew Ng showed how a convolutional layer compared to a fully connected layer: The idea that a convolutional layer was achieved through parameter sharing and masking (forcing parameters to 0) and was in a sense a form of regularization was eye-opening.

por David C

Jan 13, 2018

This is an amazing course. The instructor Andrew thoroughly walked through the motivation, concepts, and implementation of Convolutional Neural Network. The programming exercises are very informative, easy to follow, and helpful in terms of reviewing concepts covered lectures. Quizzes are of moderate difficulty and are also a resource for content review. Case studies chosen in lectures are very interesting and relevant. I highly recommend this course, especially for those who are new to the field.

por Luis E R

Apr 03, 2019

Andrew's teaching is exceptional, he finds the right way to convey the necessary information for complex concepts, he does not skip them but strikes the right balance of not going too deep, however he does warn you in a way, that you need to study them on your own.

I think the course, will give you very strong foundations if you take time to understand what you are really doing and what the algorithms are doing.

After this I think you will require a lot of practice with several examples on you own,

por Hari K M

Jan 19, 2018

Really good course but relatively tougher than the previous ones. Learnt a lot with best part being able to learn state of the art algorithms and implementations. Did felt kind of oblivious at times while doing the programming assignments but the discussion forums came in handy during those times. There are some issues with the grading of last programming assignment which I think will be resolved soon. I definitely recommend this course to everyone who wants to specialize in neural networks.

por Dhritiman S

Dec 09, 2017

The material in the course was very good. Andrew Ng is a fantastic instructor and is able to convey concepts in the most intuitive way.

This course would be perfect, but for the problems with the last two assignments (Face Recognition and Style Transfer). There were errors in instructions and grader solution wouldn't match solution expected in the notebook. The only way to figure out how to pass the assignments was to dig into forum posts where information was provided in a haphazard way.

por Paulo A F

Nov 09, 2017

Great course. It has all the main state-of-the-art approaches. I just missed dealing with 3D data (RGB-D and point clouds). I believe the programming assignments get better as the course progresses because they get more demanding.

This is a great overview course. I suggest anyone interested in deep learning vision to start with this course and then move on to implement a CNN in tensor flow form scratch using one of many tutorials online.

Thank to the team for this great course!

Best regards,

por Matei I

Mar 03, 2019

A lot of quality content in this course. The first half focuses on the intuition behind ConvNets and their implementation, while the second half focuses on applications. I thought that the neural style transfer application was particularly enjoyable. My only suggestion for improvement is to let the students do more work in the assignments for the last two weeks. I feel that most of the code in these assignments was black boxed, and I got to implement a minimal portion of the algorithms.

por Martin B

Sep 01, 2019

As with all the other courses by Andrew Ng, pacing and presentation are perfect. Learning this material is highly rewarding. Programming assignments are clear and accessible, although a little bit more thorough introduction in the use of Keras and Tensorflow wouldn't hurt in some cases. I found myself pretty deep in the documentation of both libraries - although that might be part of the intended learning process. Highly recommended! - Thanks to professor Ng for making this available

por Camilo G

Jan 14, 2020

Curso excelente. Da todos los detalles más importantes sobre redes convolucionales, incluyendo las matemáticas que las hacen funcionar (incluso explica backpropagation en un ejercicio opcional) y cuáles son y cómo funcionan las aplicaciones más importantes. Omite una que otra cosa, por ejemplo cómo aplicar vectorización a todos los ejemplos de entrenamiento, y de vez en cuando durante los videos secciones de audio se repiten por alguna razón, pero mayormente está bastante completo.

por Mihai L

Feb 19, 2018

This course is still amazing. Finally understood what CNN's are for and how to use them.

This is the first time in deeplearning.ai specialization that I had to consult the forums. by far implementing in low level code convolutions (first asignment) was the most difficult part.

Spent more time then with the other courses but it was time well spent. Again Andrew NG delivers a good course.

The minor editing problems in videos are the only issue that might be raised with this course .

por Andrew K

Dec 29, 2017

The entire course is great, from the lectures by Andrew Ng, to the homework assignments, and the TA's help on the forums. The really terrible part of the course is the coursera grader, which I had to hack for 3+ hours just to pass an assignment. I dont wanna dink the review for this because the class itself is wonderful. But please fix those technical issues. So the 5 stars come from averaging 10 stars from the course itself, and 0 star for coursera technical issues. :-)

por Omar S M

Sep 16, 2019

This is an excellent course in which Professor Andrew Ng explains the concepts of convolution, pooling and convolutional neural networks very well. Also the various advanced convolutional network architectures and various applications in computer vision are discussed in an excellent manner along with references to the research papers on which the content is based. The programming assignments are also excellent and really help you learn the principal concepts and techniques.

por HEF

Jun 02, 2019

Before taking this course, I thought computer vision had a difficult learning curve. After taking it, I found that many difficulty materials are omitted so that I could learn without too much pressure. While I could still look into algorithm details because many papers are recommended. The programming assignments cost me a little more time than the previous courses, but bring so much more fun! I felt quite proud of myself when I successfully built the CNN in my assignments.

por Ashwini J

Jan 01, 2020

Thanks to Andrew Ng and team for putting together great content around Convolutional Neural Network. This is a fairly complex course, I needed to go beyond content provided in this course, specifically around understanding dimensions resulting from a convolution operation applied on an input image. This could be because it is hard to imagine a 4-d object. Otherwise, good content put together, assignments are good and useful starting point for projects in actual practice

por Selina N

Mar 20, 2020

It's an exciting course. I find very interesting to learn object detection, facial expression and face recognition. The concept of neural style transfer is easy to understand and funny to generate image to absorb the style from another image. The explanation is useful. One improvement is some assignments only import the trained models with extra source code. It would be better for students to build by themselves to go through the whole model development step by step.

por Rahul K

Mar 07, 2018

Very intricately explained course! Prof. Andrew has gone the extra mile here, making sure that the basics of CNNs have been imbibed thoroughly. Kudos to the programming assignments - They're undoubtedly the toughest of all the former deeplearning.ai courses. Use the discussion forums to help get subtle hints. I now feel that I can read CNN-related papers and even work on CNN applications. Plus, you learn how to implement Neural Style Transfer (DeepDream) here!

por Chan-Se-Yeun

May 01, 2018

CNN is a tough topic to fully demonstrate. From my perspective, the lecturer simply offer an intuitive introduction and pick up some notable variant like ResNet, and illustrate the main ideas through delicately chosen case studies. That's somewhat "clever", I think. Maybe that's not appropriate, but I mean that it's friendly to a fresh learner but far from detailed and enlightening for an advanced learner. Anyway, I get to dive deeper into this field myself.

por Ocean

Mar 31, 2018

As in every class taught by him, Professor Andrew Ng makes Deep Learning concepts and applications accessible. His clear explanations during the videos lead from learning the foundations to implementing modern-architecture Convolutional Neural Networks. He provides additional information about whether certain techniques are currently utilized in research and production which bring an important relevancy to the material. Thank you for offering this course.

por Oleh.Davydiuk

Dec 19, 2017

Great course! Gives a great boost in understanding of deep learning usage while solving computer vision tasks. Different ConvNet architectures, their application, state of the art algorithms are explained in detail. Sometimes there were issues while solving programming assingments, specially at the last week, but I truly appreciate deeplearning.ai work that gives everyone the ability to learn about this things very effectively. So 5 for this course.

por TANVEER M

Jul 03, 2019

The course gives the basic understanding of convolutional neural network in a lucid manner.Every concept is very nicely explained. I was having some confusion with yolo algorithm which got cleared.Also Neural Style transfer and Face verification using Siamese network were the two which I haven't heard before were very interesting. The assignments are awesome where how yolo and neural style transfer works made my concepts clear to a lot of extent.

por Amit B

Mar 19, 2020

Excellent Course. It has given me an immense insight into CNN and its practical applications. I have become that much more knowledgeable thanks to this course and its contents. Sincerely appreciate the concerted efforts of the team to lucidly explain the nuances of various concepts and at the same time provide ample opportunities to the trainees on hone their skills on practical aspects of implementing the algorithms. Kudos of all stake-holders.

por Matthew J C

Mar 28, 2018

Another fantastic course from Dr. Ng. In addition to object classification/recognition (which class does the object belong to?) this course should get you started with object detection (where in the picture is/are this object/s?). This course does not cover single or multiple instance semantic segmentation. Take this course (much of the coding is from scratch) & then go look at examples from your favorite API (Keras, TensorFlow, PyTorch, etc).

por Hermes R S A

Apr 18, 2018

There is a dedication, from the professor and the team, to teach you the most recent developments, without skipping important introductory level concepts. Having a grasp on the Imagenet winning architectures was really rewarding. The only down side was the YOLO algorithm assignment, because the notebook was a little confusing and disorganized, but you ca get the key ideas from it. All in all, it was my favorite course on this specialization.

por JOSHY J

Nov 06, 2019

This is the best course for those who are serious about Deep Learning and computer vision. Some of the features of the course are Well Arranged, Simple, give a deep understanding of the mechanism, etc. We will learn Image processing, Image detection, Object detection, Face recognition and face detection through this course. Weekly assignments in the course give hand-o experience with the popular deep learning frameworks and neural networks.