Chevron Left
Volver a Convolutional Neural Networks

Opiniones y comentarios de aprendices correspondientes a Convolutional Neural Networks por parte de deeplearning.ai

4.9
estrellas
29,516 calificaciones
3,633 revisiones

Acerca del Curso

This course will teach you how to build convolutional neural networks and apply it to image data. Thanks to deep learning, computer vision is working far better than just two years ago, and this is enabling numerous exciting applications ranging from safe autonomous driving, to accurate face recognition, to automatic reading of radiology images. You will: - Understand how to build a convolutional neural network, including recent variations such as residual networks. - Know how to apply convolutional networks to visual detection and recognition tasks. - Know to use neural style transfer to generate art. - Be able to apply these algorithms to a variety of image, video, and other 2D or 3D data. This is the fourth course of the Deep Learning Specialization....

Principales revisiones

RK

Sep 02, 2019

This is very intensive and wonderful course on CNN. No other course in the MOOC world can be compared to this course's capability of simplifying complex concepts and visualizing them to get intuition.

RS

Dec 12, 2019

Great Course Overall\n\nOne thing is that some videos are not edited properly so Andrew repeats the same thing, again and again, other than that great and simple explanation of such complicated tasks.

Filtrar por:

176 - 200 de 3,605 revisiones para Convolutional Neural Networks

por Harshavardhan S

Nov 05, 2017

Awesome Course...You have gone out of your way to make the programming exercise simple enough for beginners to get a taste of very recent algorithms. thank you for your effort. I really loved the course. And it has given me enough to get me interested in and capable of following Computer Vision literature on my own with greater confidence.

por Prakash M

Feb 14, 2020

Wonderfully designed course for beginners to know all about CNNs. Even experienced professionals can have all their concepts cleared not only in CNNs, but also in YOLO and it's applications in object detection. Thank you very much Coursera Team for all your efforts in making this course accessible to thousands of aspiring data scientists.

por Yedhu K V P

Jun 29, 2018

This course helped me to learn in detail about convolutional neural networks. I have heard of CNN, but this is the first time I am trying it out myself. It's interesting and fun to learn. I'm planning to do more projects using the ideas learned from this course. I highly recommend this course to any aspiring machine learning student.

por Muhammad M K

Feb 23, 2018

An amazing course! Not only does the course covers seminal work in the area of deep learning related to image processing but it shares valuable insights into problem solving and provides hands on experience. If there is a single course that I have to recommend to anyone related to deep learning for image processing, this would be it.

por Rajthilak M

Apr 23, 2018

The lectures were excellent and helped me understand the key elements of convolutional neural networks. I enjoyed coding the assignments and building foundation knowledge for building real-world AI applications. Thanks to the very strong foundation ,I am able to read and interpret many of the real world AI experts' blog and views.

por Deleted A

Nov 27, 2017

This is really a superb course. Andrew Ng has the ability to clearly explicate the complexities of convolutional networks. The coverage of topics such as residual networks, face recognition, Yolo, and neural style transfer are both intriguing and informative. I found the programming assignments challenging, but deeply instructive.

por Irina M

Apr 02, 2019

Thank you for the course and I really like it. Learn a lot and I made few teaching sessions of DeepLearning algorithm for Women Who Code, where I am mentor in leadership group. I clarified many things for myself during the course, I very grateful for the amazing knowledge and experience! I will recommend this course to colleagues.

por Tun C

Aug 15, 2018

I appreciate the way professor Ng made the Convolutional Neural Networks concepts and architectures easy to understand. This course gave a very good overview and professor Ng presented the intuition behind the concepts as usual. The programming assignments are also a good mix of under-the-hood and high-level application of CNN.

por Wei W

Jan 10, 2018

This is a great intro to deep learning/AI course. Professor Ng has a way to explain things in a way that is super easy to understand. Basic knowledge (college level, but no need to be math/cs major) on linear algebra is required. If you are in science/engineer major, and took any kind of linear algebra class, you will be OK.

por keerthi k

Feb 21, 2020

Thank you so much Coursera. I have been doing this specialization properly, but suddenly I had an accident which took almost 10 days to become normal. During those time several assignments were overdue, but Coursera extended their assignments deadline twice and helped me complete this course. So once again I thank Coursera.

por Abhishek K S

Feb 04, 2019

The CNN is always found as one of the trickier concepts to follow and it was actually very hard for me to figure out what these Conv layers are doing. But this course is so robust and easy to follow that I was even able to read the research papers on advanced CNN architectures with relative ease. Thanks to Andrew and team.

por ANSHUMAN S

Jun 04, 2019

It has been a great journey through learning CNNs it was quite interesting rather than all other courses and I got to know really very new ideas which i can implement in my own models.

Once again I want to thanks Andrew Ng and all other teachers of Course

and a special thanks to Coursera for giving me this ample opportunity

por Nick H

May 22, 2019

Awesome course if you want to understand the basics of CNNs along with recent applications of these algorithmns.

As usual, both Andrew's material and his presentation style kept me both engaged and interested to a point that I got ahead of the weekly schedule...which is probably a good metric in terms of course success

por Keetha N V

Oct 20, 2019

Great course by Andrew Ng sir. It gives us a great insight into many case of studies of state of the art ConvNet. Gives us a lot of intuition about object detection systems in autonomous driving and landmark detection , one shot learning for face recognition and a fun way of applying ConvNets for neural style transfer!

por Wang F

Jan 14, 2018

Despite the confusing bug and server running problem in the last assignment of happy house ,

the course is still great . Compare to the other three ones, it's the hardest course for me by now .

You may feel stuck in some practice questions and program .Worth spending time to review the

stuffs of the course again。

por 杨建文

Jan 10, 2018

The last 2 courses were delayed, but the positive side for me is that, in the beginning I proceed too fast and didn't learn that well, the delay made me take more time on such a valuable course, carefully reading and memorizing the instructions of assignments. I'm really grateful for Prof. Ng's excellent instructions.

por Eric C

Jun 23, 2019

Awesome. This course was much more dense than the other ones, there is so many areas to review. Since this course is about my favorite subject, I will need to pause and rework on each individual points and associated papers (yolo, nst, similarity learning) which will probably take me weeks... Prof Andrew is the best

por Arvind N

Nov 03, 2017

I thoroughly enjoyed taking this course. Beautifully designed...Thank you!

I had written a detailed review of the first 3 deeplearing.ai courses at : https://medium.com/towards-data-science/thoughts-after-taking-the-deeplearning-ai-courses-8568f132153

I will review this CNN course as well, in the form of a blog post.

por Wade J

Mar 25, 2018

Good amount of challenge for after work learning. Nice exposure to different applications of AI. Fun.

Andrew Ng is awesome at explaining the concepts. Almost anybody would be able to understand them after he presents them. I also appreciate how genuine he is. You can trust that there is merit to what he tells you.

por Glenn P

Dec 10, 2017

Another excellent course. Convolutional Neural Networks is no longer a mystery. I like the fact that Andrew doesn't teach this as an academic class but has a very practical approach that can be applied right way. He lets you know the strengths and weakness of each of the NN and gives his personal opinion as well.

por Yijie

May 16, 2018

It is a great course that covers most part of Convolutional Neural Networks. I have learned a lot from it. Thanks Andrew! Only one suggestion: we have learned dropout and the batch norm in previous courses. Because they are such important tricks, it would be better if you could cover how they can be used in CNN.

por Ahmad B E

Nov 04, 2017

Greatest cores for me till now on deep learning. I recommend it for deep learner or computer vision student. The best thing in this course is that it is very practical and up to date, and full of research papers of algorithms that Google and Facebook currently uses. Thanks a lot Prof Andrew Ng you are the best.

por Parab N S

Aug 25, 2019

An Excellent Course to make people understand Convolutional Neural Networks in good depth and with ease. The detailed understanding of the major Convolutional models like YOLO and ResNet is like an icing on the cake. I would like to thank Professor Andrew N.G. and his team for developing this wonderful course.

por Alejandro M v G

Aug 06, 2019

Muy bueno para empezar a entender los conceptos de las capas convolucionales. Luego muestra modelos profundos como AlexNet, VGG16, ResNET, Inception que se pueden entrenar usando transfer learning. La parte de detección de objetos es la mas complicada. La parte que más me gusto fue la de reconocimiento facial.

por Jeffrey T

Mar 30, 2020

The intuition and examples made this course easy to understand and learn. I loved how Andrew decomposed current published papers into an easy to understand format. All of the important points to remember were highlighted without wasting time on the minutia. Thanks for all the hard work put into the course.