Chevron Left
Volver a Прикладные задачи анализа данных

Opiniones y comentarios de aprendices correspondientes a Прикладные задачи анализа данных por parte de Instituto de Física y Tecnología de Moscú

4.4
589 calificaciones
89 revisiones

Acerca del Curso

Методы машинного обучения — будь то алгоритмы классификации или регрессии, методы кластеризации или алгоритмы понижения размерности — применяются к подготовленным данным с вычисленными признаками для решения уже сформулированной задачи. Однако специалисты по анализу данных редко оказываются в такой идеальной ситуации. Обычно перед ними ставят задачи, которые нуждаются в уточнении формулировки, выборе метрики качества и протокола тестирования итоговой модели. Данные, с которыми нужно работать, часто представлены в непригодном виде: они зашумлены, содержат ошибки и выбросы, хранятся в неудобном формате и т. д. В этом курсе мы разберем прикладные задачи из различных областей анализа данных: анализ текста и информационный поиск, коллаборативная фильтрация и рекомендательные системы, бизнес-аналитика, прогнозирование временных рядов. На их примере вы узнаете, как извлекать признаки из разнородных данных, какие при этом возникают проблемы и как их решать. Вы научитесь сводить задачу заказчика к формальной постановке задачи машинного обучения и поймёте, как проверять качество построенной модели на исторических данных и в онлайн-эксперименте. На каждой задаче мы изучим плюсы и минусы пройденных алгоритмов машинного обучения. Прослушав этот курс, вы познакомитесь с распространенными типами прикладных задач и будете понимать схемы их решения. Задания и видео курса разработаны на Python 2....

Principales revisiones

PK

May 24, 2018

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

IS

Jan 21, 2019

Замечательный курс, полный примеров из реальной жизни для получения опыта. Очень полезные и понятные лекции, конспекты. Очень рад, что смог пройти этот курс.

Filtrar por:

26 - 50 de 87 revisiones para Прикладные задачи анализа данных

por Alexander P

Jan 20, 2019

It would be nice to have more practice with neuronets. Anyway it's very interesting course. Thanks!

por Konstantin C

May 29, 2018

качество курса немного хромает по сравнению в предыдущими (менее "академичные лекции, pdf с материалом отсутствует). но в целом, лучшее из прошлых курсов сохранено.

por Андрей М

Feb 19, 2017

Нейронные сеточки чет скомкано как-то были =(

por Konstantin

Mar 17, 2017

лекции по компьютерному зрению и особенно задание по этой теме были ни о чём. "у вас нет линукса -- у вас нет зрения". даже немного обидно)))

por Sergey K

Feb 24, 2018

Не понравилось задание по программированию из недели 4 (ранжирование) - все 4 ответа требуют по сути написания полного кода, нет возможности проверить частично выполненную работу

por Gyrdymov I

Apr 01, 2017

В целом, курс интересен, однако была пара очень запутанных заданий, в частности, по временным рядам (тест) и по ранжированию (задание по программированию)

por Vladislav

Jan 31, 2017

Те недели, что запомнились:

Временные ряды - это классно, очень понравилась тема, узнал много нового.

Неделя про нейронные сетки была очень неинформативной. Конечно, это слишком объёмная тема для одной недели, но она сделана совсем плохо. Для нейросеток неплохо было бы сделать как минимум отдельный курс, а может быть и целую специализацию.

por Blackadder

Apr 10, 2017

В целом курс, как и все предыдущие - довольно хорош, интересно и содержательно, но есть неприятные моменты, связанные с неудачной формулировкой заданий и некоторой недосказанностью, как например в методах ранжирования

por Радионов А

Oct 02, 2017

В целом отличный курс.

Но вторая неделя совсем не смотрится в сравнении со всеми остальными уроками. И общая структура странная, и выбор библиотеки непонятен: если уж выбираете такую сложную вещь, как Tensorflow, стОит объяснить, как им пользоваться. Во всех остальных случаях ведь шикарно был изложен материал.

И текстовка крайнего задания по программированию малость подкачала.

por Duman M

Mar 09, 2018

Нейронные сети не на должном уровне

por Maksim P

Oct 11, 2016

Спасибо за курс. Ближе к практике.

por Timur B

Jun 10, 2018

Неделя с нейронными сетями - тихий ужас.Первая неделя очень полезная, но можно чуть более подробнее объяснить некоторые моменты.Последняя неделя - мощь, задание очень непонятное, убивает время сильно, но позволяет немного поюзать Python.

por Беденко А А

Mar 17, 2018

Норм. Временные ряды клевые. Нейронные сети - IMHO не самая сильная тема. Но ниче, пойдет.

por Корщиков М С

Apr 10, 2018

Отличный курс.

Минус только за тест Ранжирование

por Nikolay E

Dec 28, 2017

Недели очень разные по сложности. 2 неделя про нейросети заслуживает отдельного курса.

por Ruslan S

Jun 16, 2017

Кантора в отставку!

por Ануфриев С С

Sep 02, 2017

Задания можно было немного посложнее делать.

por Artem L

Mar 23, 2018

Generally good and in-depth, but not quite accurate in providing information sometimes

por Дмитрий Д

Mar 06, 2018

Хороший курс, но хотелось бы больше примеров кода с нейросетями.

por Yuriy

Nov 05, 2017

Мног неоднозначностей в данном курсе.

por Alexander

May 03, 2017

Есть места, которые нужно поправить: в задании на программирование первой недели почетче сформулировать определение метрик, в злобном квизе вынести сложный вопрос в отдельный квиз или упростить.

В остальном курс хороший, но предыдущие понравились больше.

Пожалуйста, добавьте конспекты и сделайте рассылочку по прошедшим курс!

por Роман

Oct 22, 2017

Курс слабоват в сравнении с предыдущими курсами, но все равно огромное спасибо его создателям!

por Pile I

Jul 24, 2018

Задача на последней неделе изрядно попила крови - хотелось бы , чтобы формулировка была более четкой

por Любовь С

Aug 30, 2018

Очень уж галопом по Европам прошлись по нейросетям - отсюда ценность 2-й недели сомнительна. В остальном - хорошо.

por Sergey

Apr 11, 2019

The first week is totally outstanding. In fact, it has helped me a lot with my current project. In a nutshell, the course instructors have covered the field of the time series analysis, highlighting the important theory, and illustrating it with a nice programming example. That alone makes the course highly useful, and worth completing.

The second week - glossing over the entire field of image processing - was a good try. It is really nice that the course instructors have introduced TensorFlow - that's the way to go. Although, it has developed over the last two years, so it would make sense to rewrite the assignment using tf.keras. Perhaps, it would also make more sense to focus more on some of the image processing aspects - such as convolutional layers - instead of trying to cover everything at once.

The last two weeks definitely could've been improved. The amount and scope of theory is sensible, although in the multiple choice tests and the assignments, I literally had to psychoanalyze the instructors. There are two ways to deal with that: either to relax the 100% requirement in the multiple choice tests, or to better convey the questions. The same applies to the latest programming assignment.