Acerca de este Curso
37,680 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Inglés (English)

Subtítulos: Inglés (English)

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
9 horas para completar

Module 0 Get Ready & Module 1 Introduction to Analytics and Evolution of Statistical Inference

This session is an overview of the business data analytics process and its components. It introduces to different modeling paradigms and invites the student to match problems to modeling paradigms. The module concludes with an overview of Rattle an interface for R and its use for univariate analysis. 

...
14 videos (Total 86 minutos), 10 readings, 4 quizzes
14 videos
Rattle Installation Guidelines for Windows6m
Rattle Installation Guideline for MacOS11m
Rattle Interface for Windows9m
Lecture 1-1: Introduction to Analytics and Evolution of Statistical Inference3m
Lecture 1-2: From Data to Decisions9m
Lecture 1-3: The Evolution of Intelligent Machines3m
Lecture 1-4: Common Paradigms6m
Lecture 1-5-1: Examples of Paradigms – Part 14m
Lecture 1-5-2: Examples of Paradigms – Part 26m
Lecture 1-6: Introduction to Rattle4m
Lecture 1-7: Importing Datasets in Rattle8m
Lecture 1-8: Plotting Data and Creating Graphs in Rattle7m
Lecture 1-9: Rattle Practice and Summary3m
10 lecturas
Syllabus30m
About the Discussion Forums10m
Glossary30m
Brand Descriptions30m
Update Your Profile10m
Module 0 Agenda5m
Rattle Tutorials (Interface, Windows, Mac)30m
Module 1 Overview20m
Module 1 Readings, Data Sets, and Slides1h
Module 1 Peer Review Assignment Answer Key20m
3 ejercicios de práctica
Orientation Quiz10m
Module 1 Practice Problems40m
Module 1 Graded Quiz30m
Semana
2
6 horas para completar

Module 2 "Dating with Data"

This session focuses on identifying relationships between dependent and independent variables using a regression model. The goal is to find the best fitted model to the data to learn about the underlying relationship in the population.  

...
8 videos (Total 63 minutos), 3 readings, 3 quizzes
8 videos
Lecture 2-2: Developing and Estimating a Model3m
Lecture 2-3: Univariate and Bivariate Plots8m
Lecture 2-4: Bivariate Correlation5m
Lecture 2-5-1: Estimating With Simple Models - Part 18m
Lecture 2-5-2: Estimating With Simple Models - Part 210m
Lecture 2-6: Improving the Model12m
Lecture 2-7: Model Improvement Practice and Summary8m
3 lecturas
Module 2 Overview20m
Module 2 Readings, Data Sets, and Slides1h
Module 2 Peer Review Assignment Answer Key20m
2 ejercicios de práctica
Module 2 Practice Problems40m
Module 2 Graded Quiz30m
Semana
3
6 horas para completar

Module 3 Model Development and Testing with Holdout Data

This session introduces the student to use of a holdout data set for evaluating model performance. Methods of improving the model are discussed with emphasis on variable selection. Nuances of modeling discrete predictor variables and response variable are discussed. 

...
8 videos (Total 66 minutos), 3 readings, 3 quizzes
8 videos
Lecture 3-2: Introducing Root Mean Square Error14m
Lecture 3-3: Variable Selection8m
Lecture 3-4: Variable Selection with R Scripts8m
Lecture 3-5: Introduction to Mallow's CP6m
Lecture 3-6-1: Modeling Example – Part 18m
Lecture 3-6-2: Modeling Example – Part 29m
Lecture 3-7: Example Wrap-Up and Summary6m
3 lecturas
Module 3 Overview20m
Module 3 Readings, Data Sets, and Slides1h
Module 3 Peer Review Assignment Answer Key20m
2 ejercicios de práctica
Module 3 Practice Problems20m
Module 3 Graded Quiz30m
Semana
4
5 horas para completar

Module 4 Curse of Dimensionality

There has been a tremendous increase in the way data generation via sensors, digital platforms, user-generated content etc. are being used in the industry. For example, sensors continuously record data and store it for analysis at a later point. In the way data gets captured, there can be a lot of redundancy. With more variables, comes more trouble! There may be very little (or no) incremental information gained from these sources. This is the problem of high unwanted dimensions. And to avoid this trouble, data transformation and dimension reduction comes to the rescue by examining and extracting fewer dimensions while ensuring that it conveys the full information concisely. 

...
7 videos (Total 67 minutos), 3 readings, 3 quizzes
7 videos
Lecture 4-2: Curse of Dimensionality9m
Lecture 4-3: Limitations of Scatterplots10m
Lecture 4-4: Principle Component Analysis10m
Lecture 4-5: Principle Component Analysis in Rattle9m
Lecture 4-6: Principle Component Analysis in Rattle With Regression10m
Lecture 4-7: Principle Component Analysis Exercise and Summary8m
3 lecturas
Module 4 Overview20m
Module 4 Readings, Data Sets, and Slides1h
Module 4 Peer Review Assignment Answer Key20m
2 ejercicios de práctica
Module 4 Practice Problems
Module 4 Graded Quiz30m

Instructor

Avatar

Sridhar Seshadri

Professor of Business Administration
Business Administration

Comienza a trabajar para obtener tu maestría

Este curso es parte del Master of Science in Accountancy (iMSA) completamente en línea de Universidad de Illinois en Urbana-Champaign. Si eres aceptado en el programa completo, tus cursos cuentan para tu título.

Acerca de Universidad de Illinois en Urbana-Champaign

The University of Illinois at Urbana-Champaign is a world leader in research, teaching and public engagement, distinguished by the breadth of its programs, broad academic excellence, and internationally renowned faculty and alumni. Illinois serves the world by creating knowledge, preparing students for lives of impact, and finding solutions to critical societal needs. ...

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando compras un Certificado, obtienes acceso a todos los materiales del curso, incluidas las tareas calificadas. Una vez que completes el curso, se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes participar del curso como oyente sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.