Chevron Left
Volver a Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization

Opiniones y comentarios de aprendices correspondientes a Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization por parte de deeplearning.ai

4.9
estrellas
61,587 calificaciones

Acerca del Curso

In the second course of the Deep Learning Specialization, you will open the deep learning black box to understand the processes that drive performance and generate good results systematically. By the end, you will learn the best practices to train and develop test sets and analyze bias/variance for building deep learning applications; be able to use standard neural network techniques such as initialization, L2 and dropout regularization, hyperparameter tuning, batch normalization, and gradient checking; implement and apply a variety of optimization algorithms, such as mini-batch gradient descent, Momentum, RMSprop and Adam, and check for their convergence; and implement a neural network in TensorFlow. The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

Principales reseñas

AB

26 de ago. de 2021

Amazing course which focus on the theoretical part of parameters tuning, but it needs more explanation of Tensorflow, as I felt a little lost in the last project. Except that, it is an amazing course.

XG

30 de oct. de 2017

Thank you Andrew!! I know start to use Tensorflow, however, this tool is not well for a research goal. Maybe, pytorch could be considered in the future!! And let us know how to use pytorch in Windows.

Filtrar por:

1 - 25 de 7,067 revisiones para Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization

por Brennon B

23 de abr. de 2018

por oli c

9 de dic. de 2018

por Alan S

30 de sep. de 2017

por Lien C

31 de mar. de 2019

por Xiao G

31 de oct. de 2017

por NASIR A

14 de ene. de 2020

por Alexandre M

9 de oct. de 2019

por Md. R K S

15 de abr. de 2019

por Abhishek S

19 de abr. de 2020

por Matthew G

17 de abr. de 2019

por Carlos V

24 de dic. de 2017

por Yuhang W

25 de nov. de 2018

por Anand R

17 de feb. de 2018

por Abiodun O

6 de abr. de 2018

por Hernan F D

5 de dic. de 2019

por Youdinghuan C

28 de dic. de 2017

por Alessandro T

22 de ene. de 2018

por Hassan S

3 de abr. de 2018

por Glenn B

31 de may. de 2018

por Shah Y A

28 de oct. de 2019

por Stefaan V w

21 de ago. de 2019

por Ethan G

17 de oct. de 2017

por Hequn W

18 de abr. de 2018

por Văn H B

27 de may. de 2019

por Nimish S

15 de ago. de 2017