Chevron Left
Volver a Fundamentals of Scalable Data Science

Opiniones y comentarios de aprendices correspondientes a Fundamentals of Scalable Data Science por parte de IBM

4.3
estrellas
1,920 calificaciones
424 reseña

Acerca del Curso

Apache Spark is the de-facto standard for large scale data processing. This is the first course of a series of courses towards the IBM Advanced Data Science Specialization. We strongly believe that is is crucial for success to start learning a scalable data science platform since memory and CPU constraints are to most limiting factors when it comes to building advanced machine learning models. In this course we teach you the fundamentals of Apache Spark using python and pyspark. We'll introduce Apache Spark in the first two weeks and learn how to apply it to compute basic exploratory and data pre-processing tasks in the last two weeks. Through this exercise you'll also be introduced to the most fundamental statistical measures and data visualization technologies. This gives you enough knowledge to take over the role of a data engineer in any modern environment. But it gives you also the basis for advancing your career towards data science. Please have a look at the full specialization curriculum: https://www.coursera.org/specializations/advanced-data-science-ibm If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge. To find out more about IBM digital badges follow the link ibm.biz/badging. After completing this course, you will be able to: • Describe how basic statistical measures, are used to reveal patterns within the data • Recognize data characteristics, patterns, trends, deviations or inconsistencies, and potential outliers. • Identify useful techniques for working with big data such as dimension reduction and feature selection methods • Use advanced tools and charting libraries to: o improve efficiency of analysis of big-data with partitioning and parallel analysis o Visualize the data in an number of 2D and 3D formats (Box Plot, Run Chart, Scatter Plot, Pareto Chart, and Multidimensional Scaling) For successful completion of the course, the following prerequisites are recommended: • Basic programming skills in python • Basic math • Basic SQL (you can get it easily from https://www.coursera.org/learn/sql-data-science if needed) In order to complete this course, the following technologies will be used: (These technologies are introduced in the course as necessary so no previous knowledge is required.) • Jupyter notebooks (brought to you by IBM Watson Studio for free) • ApacheSpark (brought to you by IBM Watson Studio for free) • Python We've been reported that some of the material in this course is too advanced. So in case you feel the same, please have a look at the following materials first before starting this course, we've been reported that this really helps. Of course, you can give this course a try first and then in case you need, take the following courses / materials. It's free... https://cognitiveclass.ai/learn/spark https://dataplatform.cloud.ibm.com/analytics/notebooks/v2/f8982db1-5e55-46d6-a272-fd11b670be38/view?access_token=533a1925cd1c4c362aabe7b3336b3eae2a99e0dc923ec0775d891c31c5bbbc68 This course takes four weeks, 4-6h per week...

Principales reseñas

ZS
13 de ene. de 2021

The contents of this course are really practical and to the point. The examples and notebooks are also up to date and are very useful. i really recommend this course if you want to start with Spark.

AE
25 de mar. de 2021

It's good but it really requires someone who knows and even master Spark Apache(+SQL fundamentals) so that you can follow and understand and take advantage of the course

Filtrar por:

226 - 250 de 426 revisiones para Fundamentals of Scalable Data Science

por Anand M

23 de jun. de 2020

very nice

por STREETS O I

8 de jun. de 2020

very nice

por Lahcene O M

4 de abr. de 2020

Great job

por Charlie d T

10 de oct. de 2019

very good

por Javier C

7 de may. de 2019

Great Job

por Uzwal G

26 de abr. de 2019

Thank you

por Alessandro R M

5 de ene. de 2019

excellent

por Ahmad e D

12 de nov. de 2020

🔥🔥🔥🔥

por Thiago P

27 de abr. de 2019

awesome!

por ARUL N J

29 de sep. de 2020

Nothing

por Jeff D

23 de ene. de 2021

THanks

por Dhaou B

1 de ene. de 2021

Thinks

por HAPPY J

5 de sep. de 2021

Nice

por Sivanta

25 de jul. de 2021

nice

por Venkadesh

27 de nov. de 2020

good

por Yash V

8 de sep. de 2020

Good

por Sakshi U

24 de jul. de 2020

nice

por Rifat R

14 de jul. de 2020

Good

por Ankit M

1 de dic. de 2019

good

por Sơn T

15 de jul. de 2021

p

por Waleed M S A A A G

8 de feb. de 2019

ز

por Guido P

3 de may. de 2020

The first course "Fundamentals of Scalable Data Science" on the specialization "Advanced Data Science with IBM" provides a good overview on theory, methods and tools you need for larg-scale data analysis. It requires basic to intermediate knowledge of Python and math. But it helps if you have experience beyond that to understand some ideas quicker and get the broader context.

Potential learners should know - as it is the normal thing with teaching/learning something - the teachers can't teach you something; you have to learn it. Means: spent some time beyond the time you need to consume the material from coursera. For example, I wrote five pages on the basics on statistics. It really helps! Again, the teachers organize a well well structured journey through the course material, but the just point to things that might be interesting.

On recommendation/request for improving quality of the provided videos: the are quite outdated. Date back to 2016/2017 and use Python 2 (which is not longer maintaned since 2020). Using the old python isn't too much of a problem, but it certainly does not help to learn effectively. The bigger problem is that the shown code is massively annotated with corrections and updates. These are all correct and helpful. But simply creating an updated video is way easier to consume. Just image a studend would submit his/her thesis as a draft plus a chain of 3 patches that have to applied on the thesis draft version. Not too handy, uhhm!?

por Alfredo P

6 de mar. de 2020

My 4-star review is based on the many errors the course has. The material s great and the instructor is very knowledgable and seems to be on top of the class, however, I did not get a single reply of the notes I posted in the forum.

Besides the structure, the class requires revision due to inconsistencies and errors. It is surprising that topics have not been updated after many comments in the discussion forum.

Overall for me, it was a great experience and great learning experience

por Scott B

2 de may. de 2020

The content is great and applicable to industry. My only critique is that the coding assignments had been too simple. I would have preferred less hand-holding and more examples to work through to ensure the learner truly conceptualizes the process. With that said, it is easy enough for a learner to apply the process to other applications and understand how the pieces fit together for more real-world application.

por Moiz

28 de dic. de 2018

Overall i had a good experience with the course. The course touches a number of components of IBM Cloud platform, that includes IBM Watson Studio (online software development platform) and Node-RED (a flow based programming language for defining data flows). I am happy that this course gave me my first practical experience with Apache Spark. It took me around 10 days to complete this course.