Volver a Fundamentals of Reinforcement Learning

estrellas

2,222 calificaciones

•

541 reseña

Reinforcement Learning is a subfield of Machine Learning, but is also a general purpose formalism for automated decision-making and AI. This course introduces you to statistical learning techniques where an agent explicitly takes actions and interacts with the world. Understanding the importance and challenges of learning agents that make decisions is of vital importance today, with more and more companies interested in interactive agents and intelligent decision-making.
This course introduces you to the fundamentals of Reinforcement Learning. When you finish this course, you will:
- Formalize problems as Markov Decision Processes
- Understand basic exploration methods and the exploration/exploitation tradeoff
- Understand value functions, as a general-purpose tool for optimal decision-making
- Know how to implement dynamic programming as an efficient solution approach to an industrial control problem
This course teaches you the key concepts of Reinforcement Learning, underlying classic and modern algorithms in RL. After completing this course, you will be able to start using RL for real problems, where you have or can specify the MDP.
This is the first course of the Reinforcement Learning Specialization....

AT

6 de jul. de 2020

An excellent introduction to Reinforcement Learning, accompanied by a well-organized & informative handbook. I definitely recommend this course to have a strong foundation in Reinforcement Learning.

HT

7 de abr. de 2020

This course is one of the best I've learned so far in coursera. The explanations are clear and concise enough. It took a while for me to understand Bellman equation but when I did, it felt amazing!

Filtrar por:

por 姚佳奇

•6 de ago. de 2019

Very good courses. It helps me to understand reinforcement learning a lot.

por Andrei C

•27 de sep. de 2019

The course is overall well structured and concise. I am sure that the instructors could do a better job of putting more emphasis on the difficult parts of the course (such as how to actually use the Bellman Equations and how to calculate the State/Action Value functions). More examples of calculation would have made things far easier. All in all, it was a decent introduction to RL and the videos cleared some of the confusion that arised just by reading the RL handbook by Sutton & Barto.

por K. S

•22 de sep. de 2019

Some of the sections seemed a bit rushed up. While the book provided a good source to clarify, I would prefer a slightly slower pace with emphasis on understanding during the video presentation. However, I have learnt significantly on reinforcement learning during the course. Thanks to the instructors who are highly accomplished, and have taken the time to create this video course.

por satheeshkumar v

•12 de sep. de 2019

What ever the content taught was really really good. but still more hands-on algorithms such as Monte Carlo would have been even better. overall worth studying the course

por Akshay P

•23 de oct. de 2019

Good overall. Need to work with your assignments and their submission procedure. Lectures should be more interactive than just going through slides.

por Waziha K

•4 de jun. de 2020

Course instructors should improve their teaching style by writing equations in hand and explaining point-by-point. There is no need to show their faces in the video while teaching. They sounded like 'radio' throughout the course.

por Pickton B

•21 de jun. de 2020

Very low pedagogy in there. Just a bunch of slides (not all that good) being narrated by a standing person. You're better off reading a book.

por Ekaterina R

•13 de feb. de 2020

Not recommended

por Roger S

•17 de may. de 2021

My rating and review is for the entire specialization. Big compliments to the course instructors for developing a truly insightful and challenging course. Out of all the specializations and courses I have done on Coursera, this definitely has been the most challenging and rewarding one. The use of a textbook in addition to the video and programming materials is a very useful approach - to get the most out of this course, I recommend everyone to study all the material in advance of the lectures. This really increases the added value of the course.

As has been said by others, the capstone project (course 4) is the least developed. It is mostly a reiteration of videos from previous courses, and a few programming assignments (numbers 1 and 3 of which are very easy, whereas number 2 is very challenging). A drawback is that as the courses progress, but in particular in course 4, the programming exercises become quite mechanical, and mostly involve following specific instructions with a bit of debugging, without keeping proper sight of the bigger picture. Then again, I've felt this is the case for many courses in ML, and not particular to this course.

At this point, I feel I have a pretty good understanding of the theoretical basis of RL, but I would definitely not be able to implement an RL agent independently. I guess with this basis in hand, it is now time for some more applied (self-)study in this domain. I have definitely become even more eager to do so.

por Jonathan B

•1 de may. de 2020

Very well put together course. It does a good job of walking you through concepts in a way that's direct and accessible, while not dumbing things down. I had bought the Intro to RL textbook some months back but ran into problems getting its material to 'stick', but the ideas in chapters 1-4 are much more concrete now.

Assignments were reasonably difficult, but not overwhelmingly so. Homeworks are designed to make sure you understand key concepts moreso than being vigilantly 'rigorous' for their own sake. Emphasis of the class is making sure you understand fundamental concepts moreso than hacking your way into a working prototype of something.

While the class is designed to be easily digested, the material assumes a working knowledge of programming and mathematical formalism, so people without some background knowledge you might struggle to keep pace, even if the material is well designed.

Also, like others have mentioned.......this class follows the book pretty carefully. Don't expect anything to be covered that's not in the RL textbook the course is based off of. By the end of the class the book material will be more vivid and concrete in your mind, but you will not have branched into a direction not covered within it.

por Daniel P

•30 de dic. de 2020

The course is very good, I already had some experience with Markov chains. I found the hardest part to understand was week 3 with the Bellman equations. The course should be reinforced in this part so that everyone can understand, and it would even be to pass some of the material in this section to the second week (since it is a lot of topic).

I had to do a lot of research with other sources to be able to understand the content of week 3, since the book is not very clear material, especially on this topic. It would be very interesting if you could explain us better how to create these environments that are mentioned (eg GridWorld, Pole Car, etc) in Python in order to improve the form and intuition in the application of these concepts, this as off-topic material.

The guest talks were very beneficial to me, they give some very interesting historical and practical perspectives on the application of the concepts. Professor Warren Powell's talk was the most interesting in my opinion and he left me wondering how we could apply these concepts to real life problems.

Thanks to the team for this course.

por Neil H

•10 de nov. de 2021

The same review for all 4 courses: This is the first time I have done a Coursera module building courses up rather than just individual courses. You really feel you have achieved something out of it. Some people have commented that it is just presenting material from the Sutton and Barto book. But that book is *the* text book in the subject. The course selected particular chapters from the book. I wouldn't have got as much just from trying to read the book on its own (I probably wouldn't have read as much as I did). It was good to have the supplementary videos with other experts - and great to watch Sutton and Barto just sat down being recorded having a retrospective conversation. The programming exercises would sometimes feel they weren't testing much (in fact, the challenges were largely due to my lack of skill in Python - my Python abilities have improved which is a side benefit) but they would actually get you into the weeds as it were. All in all, the best courses I've done. Great job Martha and Adam!

por John W

•11 de sep. de 2020

This course teaches you by having you read the textbook chapters (free pdf) followed by complementary videos that help you gain intuition. The quizzes focus on you truly understanding the material and are not easy. Quizzes plus two programming assignments help you actively learn rather than just passively reading or watching videos. I do wish the Discussion Forums kept a longer history of Q&A and had more responses from the instructors and mentors. For example, I had a question that someone else had already asked (so it wasn't an unusual question), but there was no response, and enough time had passed where the post became locked from any responses. So, I would really rate this course as 4.5 stars.

por Mukund C

•7 de mar. de 2020

Phenomenal Course. Very nicely done. Wish there were more active mentor engagement, however, since the student community for this course is not as large as at the time of this writing, so not much material to search through in the discussion forums. It will be good if some of the videos are consistent with the book - e.g. the notion of "control" is not in the text, but is introduced in Week4 for DP. Also, it'd be great to have some more lectures that dig deeper into "alternate" representation of Bellman equations (we are thrown this question in the quiz, but some working professionals, like myself can be quite rusty in English<=>Notation mindset, but that's a "very" small nitpick item.

por Maximiliano B

•30 de ene. de 2020

This course is excellent and it is a great introduction to reinforcement learning. I really liked that an electronic version of the book from Sutton and Barto is available for download as part of the course. However, it is fundamental to read the book in advance before watching the videos every week to have a better understanding of the concepts. Mr. and Mrs. White explain the content very well and it helped me a lot because the book is sometimes quite abstract if you are dealing with this subject for the first time. I definitely recommend this course to have a solid foundation in Reinforcement Learning and I am looking forward to start the next course of the specialization.

por Samuel L

•27 de mar. de 2021

The course is vary good constructed. Very clear. And the homework is relatively easy compared to the excercises in the textbook, which is a good intro for coming back for those excercises.

A deep insight can not be built by this fundamentals course, but i don't mean that in a bad way. It's not easy for instructors to lead beginners through these fundamental concepts without losing well explaination of the basic therom and illustrating meaning and purposes of them straightforwardly. But Instructors here did a good job. Great respect for the high quality of this lectur. Thx again. I will keep up with the rest courses.

por Everest L

•7 de may. de 2020

I've taken a few Coursera courses on machine learning/AI, and this is by far my favorite one. I love how the course is theoretically rigorous while still providing you with hands-on practice. Note: the short lecture videos don't contain all useful details, reading the (free) recommended textbook is a wise thing to do. Sometimes the quiz questions are drawn from the textbook, with slight modifications, and you'd be glad that you've worked through them prior.

No need to fret over reading every page of the textbook either, because recommended page ranges are given and they help.

por Deleted A

•17 de sep. de 2019

I found the course really helpful. I have been learning RL for some time and it was hear that almost finally i can say that a lot of the concepts that were vague in my head became clearer. Also it made me look at the book of Sutton and Barto and found that it was a good experience. Maybe more examples and questions in between videos as in deeplearning.ai of Andrew NG could be good for keeping with the attention could be nice. Also maybe doing more programming exercises in between the ones we did in order to implement each step would be great. Thank you very much!!!!

por Leyong L

•26 de feb. de 2021

Pros: - the time required to complete this course is reasonable and flexible

-the teaching videos explain unclarity from just reading the textbook.

-the practical examples and programming exercises help learners to relate the learned knowledge to a greater context

Cons: - some part it is not clear what do the variables of the equation meant and how it is related to real-world variables. (nevertheless, the user can find resources online to better understand the mathematics behind reinforcement learning)

por Douglas D R M

•1 de jul. de 2020

I believe that, as of now, this is the most educational and informative resource available online to learn the fundamentals of RL from scratch. the instructors use Sutton’s book as reference material (which is freely available online), guide you to details that no one would know are important when studying RL alone and prepare you to venture further into the area, with a solid foundation. I definitely recommend this as a starting point for anyone who wants to dig deep into RL.

por Saraj S

•28 de ago. de 2019

This is the best RL course I have ever attended. Even before starting this course I had brought the textbook (the one which course instructors also recommend) and was through the first 4 chapters. I understood most of the material but when I attended the class, everything was crystal clear. I hope instructors follow up and create the remaining courses as well. Please increase prgramming assignments in number as well. Thumbs up. Thanks for this course, very grateful.

por Kaylee Z

•3 de oct. de 2019

I really like this course. This course introduces the basic mathematical background needed in RL, as well as provided algorithms and hands-on programming practices in translating algorithms into actual code, which is a well-blended material for students to learn! The quizzes are very helpful as well, which helps me understand the concepts better. All the methods discussed here are quite practical and intuitive. Thanks Martha and Adam making this course fun!

por Artod d

•3 de oct. de 2021

Honestly, I would prefer to just lay back and consume knowledge from videos rather than reading a book full of scary math :)

Another issue is that the time allocated for reading and programming assessments is not fair: reading the book definitely takes longer, considering all that level of abstraction.

I would recommend to watch David Silver's course on Youtube after this course for generalization and a deeper understanding of the topic.

por Mohamed S R I

•22 de dic. de 2019

The material in this course is of interest or me. It combines both theories and practical aspects of RL. The course follows the standard book in RL (Sutton & Barto Book).

One improvement may be needed is to add more "modern" examples and programming assignments/modules to explain the concepts. Also, it would be nice if the instructors can sometimes reflect on their own experiences with RL, rather than exactly following the book.

por Tianwen M

•3 de feb. de 2021

This course provides me the fundamental principles of RL! I like the clarity of each module (because I tend to be lost in the textbook only). In addition, I really appreciate the programming assignments of this specialization which helps me gain a deeper understanding of the basic concepts. I used to be afraid of dynamic programming, but I think I am confident enough to study more complex problems using DP in the future.

- Analista de datos de Google
- Gestión de proyectos de Google
- Diseño de experiencia del usuario (UX) de Google
- Soporte de TI de Google
- Ciencia de datos de IBM
- Analista en datos de IBM
- Análisis de datos de IBM con Excel y R
- Analista de ciberseguridad de IBM
- Ingeniería de Datos de IBM
- Desarrollador de la nube de pila completa de IBM
- Marketing en redes sociales: Facebook
- Analítica del marketing de Facebook
- Representante de desarrollo de ventas de Salesforce
- Operaciones de venta de Salesforce
- Contabilidad en Intuit
- Prepárate para una certificación en Google Cloud: arquitecto de la nube
- Prepárate para una certificación en Google Cloud: ingeniero de datos de la nube
- Lanza tu carrera profesional
- Prepárate para una certificación
- Avanza en tu carrera

- cursos gratuitos
- Aprende un idioma
- python
- Java
- diseño web
- SQL
- Cursos gratis
- Microsoft Excel
- Administración de proyectos
- seguridad cibernética
- Recursos Humanos
- Cursos gratis en Ciencia de los Datos
- hablar inglés
- Redacción de contenidos
- Desarrollo web de pila completa
- Inteligencia artificial
- Programación C
- Aptitudes de comunicación
- Cadena de bloques
- Ver todos los cursos

- Habilidades para equipos de ciencia de datos
- Toma de decisiones basada en datos
- Habilidades de ingeniería de software
- Habilidades sociales para equipos de ingeniería
- Habilidades para administración
- Habilidades en marketing
- Habilidades para equipos de ventas
- Habilidades para gerentes de productos
- Habilidades para finanzas
- Cursos populares de Ciencia de los Datos en el Reino Unido
- Beliebte Technologiekurse in Deutschland
- Certificaciones populares en Seguridad Cibernética
- Certificaciones populares en TI
- Certificaciones populares en SQL
- Guía profesional de gerente de Marketing
- Guía profesional de gerente de proyectos
- Habilidades en programación Python
- Guía profesional de desarrollador web
- Habilidades como analista de datos
- Habilidades para diseñadores de experiencia del usuario

- MasterTrack® Certificates
- Certificados profesionales
- Certificados universitarios
- MBA y títulos de grado en negocios
- Títulos de grado en ciencias de los datos
- Títulos en ciencias informáticas
- Títulos de grado en Análisis de datos
- Títulos de grado en salud pública
- Títulos de grado en Ciencias Sociales
- Títulos de grado en administración
- Títulos de grado de las principales universidades europeas
- Maestrías
- Licenciaturas
- Títulos de grado con trayectoria de desempeño
- Cursos BSc
- ¿Qué es una licenciatura?
- ¿Cuánto tiempo dura una Maestría?
- ¿Vale la pena hacer una MBA en línea?
- Siete maneras de pagar la escuela de posgrado
- Ver todos los certificados