Acerca de este Curso
6,685 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel avanzado

Inglés (English)

Subtítulos: Inglés (English)

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel avanzado

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
23 minutos para completar

Introduction

This is just a two-minutes advertisement and a short reference list.

...
1 video (Total 3 minutos), 2 readings
2 lecturas
Introduction/Manual10m
References10m
2 horas para completar

Week 1

We introduce the basic notions such as a field extension, algebraic element, minimal polynomial, finite extension, and study their very basic properties such as the multiplicativity of degree in towers.

...
6 videos (Total 84 minutos), 1 quiz
6 videos
1.2 Algebraic elements. Minimal polynomial.12m
1.3 Algebraic elements. Algebraic extensions.14m
1.4 Finite extensions. Algebraicity and finiteness.14m
1.5 Algebraicity in towers. An example.14m
1.6. A digression: Gauss lemma, Eisenstein criterion.13m
1 ejercicio de práctica
Quiz 140m
Semana
2
2 horas para completar

Week 2

We introduce the notion of a stem field and a splitting field (of a polynomial). Using Zorn's lemma, we construct the algebraic closure of a field and deduce its unicity (up to an isomorphism) from the theorem on extension of homomorphisms.

...
5 videos (Total 67 minutos), 1 quiz
5 videos
2.2 Splitting field.11m
2.3 An example. Algebraic closure.14m
2.4 Algebraic closure (continued).15m
2.5 Extension of homomorphisms. Uniqueness of algebraic closure.11m
1 ejercicio de práctica
QUIZ 240m
Semana
3
4 horas para completar

Week 3

We recall the construction and basic properties of finite fields. We prove that the multiplicative group of a finite field is cyclic, and that the automorphism group of a finite field is cyclic generated by the Frobenius map. We introduce the notions of separable (resp. purely inseparable) elements, extensions, degree. We briefly discuss perfect fields. This week, the first ungraded assignment (in order to practice the subject a little bit) is given.

...
6 videos (Total 82 minutos), 1 reading, 1 quiz
6 videos
3.2 Properties of finite fields.14m
3.3 Multiplicative group and automorphism group of a finite field.15m
3.4 Separable elements.15m
3.5. Separable degree, separable extensions.15m
3.6 Perfect fields.9m
1 lectura
Ungraded assignment 12h
1 ejercicio de práctica
QUIZ 340m
Semana
4
2 horas para completar

Week 4

This is a digression on commutative algebra. We introduce and study the notion of tensor product of modules over a ring. We prove a structure theorem for finite algebras over a field (a version of the well-known "Chinese remainder theorem").

...
6 videos (Total 91 minutos), 1 quiz
6 videos
4.2 Tensor product of modules14m
4.3 Base change14m
4.4 Examples. Tensor product of algebras.15m
4.5 Relatively prime ideals. Chinese remainder theorem.14m
4.6 Structure of finite algebras over a field. Examples.16m
1 ejercicio de práctica
QUIZ 440m
4.3
27 revisionesChevron Right

Principales revisiones sobre Introduction to Galois Theory

por CLJun 16th 2016

Outstanding course so far - a great refresher for me on Galois theory. It's nice to see more advanced mathematics classes on Coursera.

Instructor

Avatar

Ekaterina Amerik

Professor
Department of Mathematics

Acerca de National Research University Higher School of Economics

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more. Learn more on www.hse.ru...

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando compras un Certificado, obtienes acceso a todos los materiales del curso, incluidas las tareas calificadas. Una vez que completes el curso, se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes participar del curso como oyente sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.