Acerca de este Curso
2,949

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 12 horas para completar

Sugerido: 7 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 12 horas para completar

Sugerido: 7 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
10 horas para completar

Project Planning and Staffing

In this module I share with you my experience in product planning, staffing and execution. You will perform a product tear down and build a bill of materials (BOM) for that product. ...
12 videos (Total 112 minutos), 2 readings, 2 quizzes
12 videos
Segment 1 - Learning Outcomes, Introduction to a Design Process12m
Segment 2 - Requirements, Scope, Schedule, Resources, Heap Chart15m
Segment 3 - Roles and Responsibilities6m
Segment 4 - Process: Architecture Definition, Design Planning13m
Segment 5 - Process: Architecture Definition, Design Planning 218m
Segment 6 - Process: Develop9m
Segment 7 - Process: Verification11m
Segment 8 - Process: Manufacture2m
Segment 9 - Process: Deploy10m
Segment 10 - Process: Validation6m
Segment 11 - Temperature5m
2 lecturas
A Note from the Instructor5m
Project Planning and Machine Learning Course Slides10m
1 ejercicios de práctica
Quiz 110m
Semana
2
2 horas para completar

Sensors and File Systems

In this module you will learn about sensors, and in this case, a temperature sensor. You will learn how to calibrate and then validate that a temperature sensor is producing accurate results. We will study how data is stored on hard drives and solid state drives. We will take a brief look at file systems used to store large data sets....
16 videos (Total 103 minutos), 1 quiz
16 videos
Segment 1 - Learning Outcomes, Introduction to Thermistors3m
Segment 2 - Terminology: Resolution, Precision, Accuracy, Tolerance6m
Segment 3 - Basic Sensor Circuit5m
Segment 4 - Accuracy Example2m
Segment 5 - Calculating Rtherm2m
Segment 6 - Validating Calibration5m
Segment 7 - Filtering Techniques11m
Segment 8 - Block, Object and Key-Value Storage Devices15m
Segment 9 - Filesystem Basics3m
Segment 10 - A File on a Hard Drive5m
Segment 11 - A File on a Solid State Drive8m
Segment 12 - File System: NFS4m
Segment 13 - How Big is "Big"?8m
Segment 14 - Traditional File System Bottlenecks3m
Segment 15 - Parallel Distributed File Systems: Hadoop, Lustre13m
1 ejercicios de práctica
Quiz 218m
Semana
3
3 horas para completar

Machine Learning

In this module we look at machine learning, what it is and how it works. We take a look at a couple supervised learning algorithms and 1 unsupervised learning algorithm. No coding is required of you. Instead I provide working source code to you so you can play around with these algorithms. I wrap up by providing some examples of how ML can be used in the IIoT space....
22 videos (Total 132 minutos), 1 reading, 1 quiz
22 videos
Segment 1 - Learning Outcomes1m
Segment 2 - AI Backgrounder6m
Segment 3 - Machine Learning, What is it?6m
Segment 4 - Machine Learning Schools of Thought9m
Segment 5 - Get the Tools3m
Segment 6 - Categories of Machine Learning5m
Segment 7 - Supervised Learning, Linear Regression 17m
Segment 8 - Supervised Leraning, Linear Regression 29m
Segment 9 - Supervised Learning, Linear Regression 38m
Segment 10 - Supervised Learning, Linear Regression 49m
Segment 11 - Supervised Learning, Bayes Theorem4m
Segment 12 - Supervised Learning, Naive Bayes9m
Segment 13 - Supervised Learning, Support Vector Machines (SVM) Introduction55s
Segment 14 - Supervised Learning, SVMs12m
Segment 15 - Unsupervised Learning, K-Means11m
Segment 16 - Reinforcement Learning46s
Segment 17 - Supervised Learning, Deep Learning2m
Segment 18 - Rick Rashid, Natural Language Processing8m
Segment 19 - Deep Learning, Hearing Aid2m
Segment 20 - Machine Learning in IIoT4m
Segment 21 - Machine Learning Summary4m
1 lecturas
Source code examples and magazine articles10m
1 ejercicios de práctica
Quiz 322m
Semana
4
3 horas para completar

Big Data Analytics

In this module you will learn about big data and why we want to study it. You will learn about issues that can arise with a data set and the importance of properly preparing data prior to a ML exercise....
19 videos (Total 119 minutos), 1 reading, 1 quiz
19 videos
Segment 1 - Learning Outcomes, Definition of Big Data3m
Segment 2 - Importance of Big Data, Characteristics of Big Data4m
Segment 3 - Size of Big Data4m
Segment 4 - Introduction to Predictive Analytics2m
Segment 5 - Role of Statistics and Data Mining3m
Segment 6 - Machine Learning, Generalization and Discrimination7m
Segment 7 - Frameworks, Testing and Validating5m
Segment 8 - Bias and Variance in your Data3m
Segment 9 - Out-of-sample Data and Learning Curves5m
Segment 10 - Cross Validation5m
Segment 11 - Model Complexity, Over- and Under-fitting3m
Segment 12 - Processing Your Data Prior to Machine Learning8m
Segment 13 - Good Data, Smart Data6m
Segment 14 - Visualizing Your Data1m
Segment 15 - Principal Component Analysis (PCA)2m
Segment 16 - Prognostic Health Management, Hadoop Machine Learning Library11m
Segment 17 - My Example: Predicting NFL Football Winners18m
Segment 18 - Tom Bradicich, Hewlett Packard's Viewpoint on Big Data20m
1 lecturas
Source code example10m
1 ejercicios de práctica
Quiz 426m

Instructores

Avatar

David Sluiter

Professor Adjunct
Electrical, Computer, and Energy Engineering

Acerca de Universidad de Colorado en Boulder

CU-Boulder is a dynamic community of scholars and learners on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions in the prestigious Association of American Universities (AAU), we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies....

Acerca del programa especializado Developing Industrial Internet of Things

In this specialization, you will engage the vast array of technologies that can be used to build an industrial internet of things deployment. You'll encounter market sizes and opportunities, operating systems, networking concepts, many security topics, how to plan, staff and execute a project plan, sensors, file systems and how storage devices work, machine learning and big data analytics, an introduction to SystemC, techniques for debugging deeply embedded systems, promoting technical ideas within a company and learning from failures. In addition, students will learn several key business concepts important for engineers to understand, like CapEx (capital expenditure) for buying a piece of lab equipment and OpEx (operational expense) for rent, utilities and employee salaries....
Developing Industrial Internet of Things

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.