Acerca de este Curso
4.0
2 calificaciones
100 % en línea

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.
Nivel intermedio

Nivel intermedio

Horas para completar

Aprox. 11 horas para completar

Sugerido: 1 週間の学習(8~10 時間/週)...
Idiomas disponibles

Japonés

Subtítulos: Japonés, Francés (French), Portugués (de Brasil), Alemán (German), Inglés (English), Español (Spanish)...
100 % en línea

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.
Nivel intermedio

Nivel intermedio

Horas para completar

Aprox. 11 horas para completar

Sugerido: 1 週間の学習(8~10 時間/週)...
Idiomas disponibles

Japonés

Subtítulos: Japonés, Francés (French), Portugués (de Brasil), Alemán (German), Inglés (English), Español (Spanish)...

Programa - Qué aprenderás en este curso

Semana
1
Horas para completar
7 minutos para completar

はじめに

機械学習プログラムの記述に使用するツールは TensorFlow です。そのため、このコースでは TensorFlow について説明します。最初のコースでは、ビジネス上の問題を機械学習の問題として定式化する方法を学習し、2 つ目のコースでは、機械学習が実際にどのように機能するかと、機械学習に使用できるデータセットを作成する方法を学習しました。データの準備ができたので、機械学習プログラムを記述してみましょう。...
Reading
2 videos (Total: 7 min)
Video2 videos
Qwiklabs の概要5m
Horas para completar
3 horas para completar

コア TensorFlow

"TensorFlow のコア コンポーネントについて説明し、機械学習プログラムを作成する実践演習を行います。遅延評価と命令型プログラムを比較して記述し、グラフ、セッション、変数を使用して、最終的に TensorFlow プログラムをデバッグします。 "...
Reading
19 videos (Total: 72 min), 4 quizzes
Video19 videos
TensorFlow とは2m
有向グラフの利点5m
TensorFlow API の階層3m
遅延評価4m
グラフとセッション4m
テンソルの評価2m
グラフの可視化2m
テンソル6m
変数6m
ラボの概要: 下位レベルの TensorFlow プログラムの作成m
ラボのソリューション8m
はじめに5m
形の問題3m
形の問題の修正2m
データ型の問題1m
全プログラムのデバッグ4m
概要: 全プログラムのデバッグm
デモ: 全プログラムのデバッグ3m
Quiz3 ejercicios de práctica
TensorFlow とは2m
グラフとセッション8m
コア TensorFlow20m
Semana
2
Horas para completar
4 horas para completar

Estimator API

このモジュールでは、Estimator API について説明します。...
Reading
18 videos (Total: 67 min), 4 quizzes
Video18 videos
Estimator API3m
事前作成済み Estimator5m
デモ: 住宅価格モデル1m
チェックポインティング1m
メモリ内データセットのトレーニング2m
ラボの概要: Estimator APIm
ラボのソリューション: Estimator API10m
Dataset API を使用して大規模なデータセットをトレーニングする8m
ラボの概要: バッチ処理を使用して TensorFlow の取り込みをスケールアップするm
ラボのソリューション: バッチ処理を使用して TensorFlow の取り込みをスケールアップする5m
大規模なジョブ、分散トレーニング6m
TensorBoard によるモニタリング3m
デモ: TensorBoard UIm
処理入力関数5m
内容のまとめ: Estimator API1m
ラボの概要: Estimator API を使用して分散トレーニング TensorFlow モデルを作成するm
ラボのソリューション: Estimator API を使用して分散トレーニング TensorFlow モデルを作成する7m
Quiz1 ejercicios de práctica
Estimator API18m
Semana
3
Horas para completar
2 horas para completar

CMLE で TensorFlow モデルをスケールする

ここでは、TensorFlow モデルの使い方と、機械学習モデルのトレーニングとデプロイに向けて GCP のマネージド インフラストラクチャで TensorFlow モデルをトレーニングする方法について説明します。...
Reading
6 videos (Total: 29 min), 2 quizzes
Video6 videos
Cloud Machine Learning Engine を使用する理由6m
モデルをトレーニングする2m
トレーニング ジョブのモニタリングとデプロイを行う2m
ラボの概要: Cloud Machine Learning Engine を使用して TensorFlow をスケーリングするm
ラボのソリューション: Cloud Machine Learning Engine を使用して TensorFlow をスケーリングする16m
Quiz1 ejercicios de práctica
Cloud MLE10m
Horas para completar
2 minutos para completar

まとめ

ここでは、このコースで学習した TensorFlow のトピックについて要点をまとめます。コア TensorFlow コード、Estimator API、Cloud Machine Learning Engine による機械学習モデルのスケーリングについて振り返ります。...
Reading
1 videos (Total: 2 min)
Video1 videos

Acerca de Google Cloud

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

Acerca del programa especializado Machine Learning with TensorFlow Google Cloud Platform 日本語版

機械学習とはどのようなもので、どのような問題解決に役立つのでしょうか。候補となるユースケースを機械学習で習得できる形に変換する5段階とは、そしてこれらの段階を省略しないことが重要である理由は何でしょうか。今、なぜニューラル ネットワークに注目が集まっているのでしょうか。 問題を設定し、勾配降下を使用して適切な解決策を見つけ、データセットを作成する方法について学びます。また、Tensorflow でスケーラブルな分散型機械学習モデルを作成して、これらのモデルのトレーニングを拡張し、高性能な予測ができるようになります。さらに、機械学習(ML)がデータから重要な特質を学習したり、人間による分析を問題に取り入れるように、生データを変換します。最後に、正確で一般化されたモデルを生成し、特定の ML 問題を解決する理論について、および適切なパラメータの組み合わせ方を学びます。まず ML 集中型の戦略の構築から始め、その後 Google Cloud Platform のハンズオンラボを通じてモデルのトレーニング、最適化、本稼働まで、ML に関する手順全体を実習します。...
Machine Learning with TensorFlow  Google Cloud Platform 日本語版

Preguntas Frecuentes

  • Sí, puedes acceder a una vista preliminar del primer video y ver el programa antes de inscribirte. Debes comprar el curso para acceder a contenido que no está incluido en la vista preliminar

  • Si decides inscribirte en el curso antes de la fecha de inicio de la sesión, tendrás acceso a todos los videos y las lecturas de la lección para el curso. Podrás enviar tareas en cuanto comience la sesión.

  • Una vez que te inscribes y comienza la sesión, tendrás acceso a todos los videos y otros recursos, incluidos artículos de lectura y el foro de debate del curso. Podrás ver y enviar tareas de práctica y completar tareas con calificación obligatorias para obtener un título y un Certificado de curso

  • Si completas el curso de manera correcta, tu Certificado de curso electrónico se agregará a la página Logros. Desde allí, puedes imprimir tu Certificado de curso o agregarlo a tu perfil de LinkedIn

  • Este curso es uno de los pocos que se ofrecen en Coursera que está actualmente disponible solo para estudiantes que pagaron o que recibieron ayuda económica. / Si deseas tomar este curso, pero no puedes pagar la tarifa, te sugerimos enviar una solicitud de ayuda económica.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.