Deep Learning is the go-to technique for many applications, from natural language processing to biomedical. Deep learning can handle many different types of data such as images, texts, voice/sound, graphs and so on. This course will cover the basics of DL including how to build and train multilayer perceptron, convolutional neural networks (CNNs), recurrent neural networks (RNNs), autoencoders (AE) and generative adversarial networks (GANs). The course includes several hands-on projects, including cancer detection with CNNs, RNNs on disaster tweets, and generating dog images with GANs.
Este curso forma parte de Programa especializado: Machine Learning: Theory and Hands-on Practice with Python

Acerca de este Curso
Calculus, Linear algebra, Python, NumPy, Pandas, Matplotlib, and Scikit-learn. Familiarity with classic Supervised and Unsupervised Learning.
Qué aprenderás
Apply different optimization methods while training and explain different behavior.
Use cloud tools and deep learning libraries to implement CNN architecture and train for image classification tasks.
Apply deep learning package to sequential data, build models, train, and tune.
Habilidades que obtendrás
- Deep Learning
- Artificial Neural Network
- Convolutional Neural Network
- Unsupervised Deep Learning
- Recurrent Neural Network
Calculus, Linear algebra, Python, NumPy, Pandas, Matplotlib, and Scikit-learn. Familiarity with classic Supervised and Unsupervised Learning.
Ofrecido por
Comienza a trabajar para obtener tu maestría
Programa - Qué aprenderás en este curso
Deep Learning Introduction, Multilayer Perceptron
Training Neural Networks
Deep Learning on Images
Deep Learning on Sequential Data
Acerca de Programa especializado: Machine Learning: Theory and Hands-on Practice with Python

Preguntas Frecuentes
¿Cuándo podré acceder a las lecciones y tareas?
¿Qué recibiré si me suscribo a este Programa especializado?
¿Hay ayuda económica disponible?
¿Tienes más preguntas? Visita el Centro de Ayuda al Estudiante.