Acerca de este Curso
145,337 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel avanzado

Aprox. 33 horas para completar

Sugerido: 5 weeks of study, 4-5 hours per week...

Inglés (English)

Subtítulos: Inglés (English)

Habilidades que obtendrás

ChatterbotTensorflowDeep LearningNatural Language Processing

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel avanzado

Aprox. 33 horas para completar

Sugerido: 5 weeks of study, 4-5 hours per week...

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
5 horas para completar

Intro and text classification

11 videos (Total 114 minutos), 3 readings, 3 quizzes
11 videos
Welcome video5m
Main approaches in NLP7m
Brief overview of the next weeks7m
[Optional] Linguistic knowledge in NLP10m
Text preprocessing14m
Feature extraction from text14m
Linear models for sentiment analysis10m
Hashing trick in spam filtering17m
Neural networks for words14m
Neural networks for characters8m
3 lecturas
Prerequisites check-list2m
Hardware for the course5m
Getting started with practical assignments20m
2 ejercicios de práctica
Classical text mining10m
Simple neural networks for text10m
Semana
2
5 horas para completar

Language modeling and sequence tagging

8 videos (Total 84 minutos), 2 readings, 3 quizzes
8 videos
Perplexity: is our model surprised with a real text?8m
Smoothing: what if we see new n-grams?7m
Hidden Markov Models13m
Viterbi algorithm: what are the most probable tags?11m
MEMMs, CRFs and other sequential models for Named Entity Recognition11m
Neural Language Models9m
Whether you need to predict a next word or a label - LSTM is here to help!11m
2 lecturas
Perplexity computation10m
Probabilities of tag sequences in HMMs20m
2 ejercicios de práctica
Language modeling15m
Sequence tagging with probabilistic models20m
Semana
3
5 horas para completar

Vector Space Models of Semantics

8 videos (Total 83 minutos), 3 quizzes
8 videos
Explicit and implicit matrix factorization13m
Word2vec and doc2vec (and how to evaluate them)10m
Word analogies without magic: king – man + woman != queen11m
Why words? From character to sentence embeddings11m
Topic modeling: a way to navigate through text collections7m
How to train PLSA?6m
The zoo of topic models13m
2 ejercicios de práctica
Word and sentence embeddings15m
Topic Models10m
Semana
4
5 horas para completar

Sequence to sequence tasks

9 videos (Total 98 minutos), 4 quizzes
9 videos
Noisy channel: said in English, received in French6m
Word Alignment Models12m
Encoder-decoder architecture6m
Attention mechanism9m
How to deal with a vocabulary?12m
How to implement a conversational chat-bot?11m
Sequence to sequence learning: one-size fits all?10m
Get to the point! Summarization with pointer-generator networks12m
3 ejercicios de práctica
Introduction to machine translation10m
Encoder-decoder architectures20m
Summarization and simplification15m
4.6
99 revisionesChevron Right

38%

comenzó una nueva carrera después de completar estos cursos

36%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

33%

consiguió un aumento de sueldo o ascenso

Principales revisiones sobre Procesamiento de lenguajes naturales

por GYMar 24th 2018

Great thanks to this amazing course! I learned a lot on state-to-art natural language processing techniques! Really like your awesome programming assignments! See you HSE guys in next class!

por YYJan 2nd 2019

I like this course very much. It is a good introduction for NLP. But if you want to know more about the NLP, you need to search and read a lot of posts during the learning process.

Instructores

Avatar

Anna Potapenko

Researcher
HSE Faculty of Computer Science
Avatar

Alexey Zobnin

Accosiate professor
HSE Faculty of Computer Science
Avatar

Anna Kozlova

Team Lead
Yandex
Avatar

Sergey Yudin

Analyst-developer
Yandex
Avatar

Andrei Zimovnov

Senior Lecturer
HSE Faculty of Computer Science

Acerca de National Research University Higher School of Economics

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more. Learn more on www.hse.ru...

Acerca de Programa especializado Aprendizaje automático avanzado

This specialization gives an introduction to deep learning, reinforcement learning, natural language understanding, computer vision and Bayesian methods. Top Kaggle machine learning practitioners and CERN scientists will share their experience of solving real-world problems and help you to fill the gaps between theory and practice. Upon completion of 7 courses you will be able to apply modern machine learning methods in enterprise and understand the caveats of real-world data and settings....
Aprendizaje automático avanzado

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.