In this course on Linear Algebra we look at what linear algebra is and how it relates to vectors and matrices. Then we look through what vectors and matrices are and how to work with them, including the knotty problem of eigenvalues and eigenvectors, and how to use these to solve problems. Finally we look at how to use these to do fun things with datasets - like how to rotate images of faces and how to extract eigenvectors to look at how the Pagerank algorithm works.
ofrecido por
Acerca de este Curso
Resultados profesionales del estudiante
28%
28%
Habilidades que obtendrás
Resultados profesionales del estudiante
28%
28%
ofrecido por

Imperial College London
Imperial College London is a world top ten university with an international reputation for excellence in science, engineering, medicine and business. located in the heart of London. Imperial is a multidisciplinary space for education, research, translation and commercialisation, harnessing science and innovation to tackle global challenges.
Programa - Qué aprenderás en este curso
Introduction to Linear Algebra and to Mathematics for Machine Learning
In this first module we look at how linear algebra is relevant to machine learning and data science. Then we'll wind up the module with an initial introduction to vectors. Throughout, we're focussing on developing your mathematical intuition, not of crunching through algebra or doing long pen-and-paper examples. For many of these operations, there are callable functions in Python that can do the adding up - the point is to appreciate what they do and how they work so that, when things go wrong or there are special cases, you can understand why and what to do.
Vectors are objects that move around space
In this module, we look at operations we can do with vectors - finding the modulus (size), angle between vectors (dot or inner product) and projections of one vector onto another. We can then examine how the entries describing a vector will depend on what vectors we use to define the axes - the basis. That will then let us determine whether a proposed set of basis vectors are what's called 'linearly independent.' This will complete our examination of vectors, allowing us to move on to matrices in module 3 and then start to solve linear algebra problems.
Matrices in Linear Algebra: Objects that operate on Vectors
Now that we've looked at vectors, we can turn to matrices. First we look at how to use matrices as tools to solve linear algebra problems, and as objects that transform vectors. Then we look at how to solve systems of linear equations using matrices, which will then take us on to look at inverse matrices and determinants, and to think about what the determinant really is, intuitively speaking. Finally, we'll look at cases of special matrices that mean that the determinant is zero or where the matrix isn't invertible - cases where algorithms that need to invert a matrix will fail.
Matrices make linear mappings
In Module 4, we continue our discussion of matrices; first we think about how to code up matrix multiplication and matrix operations using the Einstein Summation Convention, which is a widely used notation in more advanced linear algebra courses. Then, we look at how matrices can transform a description of a vector from one basis (set of axes) to another. This will allow us to, for example, figure out how to apply a reflection to an image and manipulate images. We'll also look at how to construct a convenient basis vector set in order to do such transformations. Then, we'll write some code to do these transformations and apply this work computationally.
Reseñas
Principales reseñas sobre MATHEMATICS FOR MACHINE LEARNING: LINEAR ALGEBRA
Professors teaches in so much friendly manner. This is beginner level course. Don't expect you will dive deep inside the Linear Algebra. But the foundation will become solid if you attend this course.
Great way to learn about applied Linear Algebra. Should be fairly easy if you have any background with linear algebra, but looks at concepts through the scope of geometric application, which is fresh.
Excellent review of Linear Algebra even for those who have taken it at school. Handwriting of the first instructor wasn't always legible, but wasn't too bad. Second instructor's handwriting is better.
Amazing course, great instructors. The amount of working linear algebra knowledge you get from this single course is substantial. It has already helped solidify my learning in other ML and AI courses.
Acerca de Programa especializado: Matemática aplicada al aprendizaje automático
For a lot of higher level courses in Machine Learning and Data Science, you find you need to freshen up on the basics in mathematics - stuff you may have studied before in school or university, but which was taught in another context, or not very intuitively, such that you struggle to relate it to how it’s used in Computer Science. This specialization aims to bridge that gap, getting you up to speed in the underlying mathematics, building an intuitive understanding, and relating it to Machine Learning and Data Science.

Preguntas Frecuentes
¿Cuándo podré acceder a las lecciones y tareas?
¿Qué recibiré si me suscribo a este Programa especializado?
Is financial aid available?
¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.