Acerca de este Curso
100 % en línea

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.
Nivel intermedio

Nivel intermedio

Horas para completar

Aprox. 22 horas para completar

Sugerido: 8 hours/week...
Idiomas disponibles

Ruso (Russian)

Subtítulos: Ruso (Russian)
100 % en línea

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.
Nivel intermedio

Nivel intermedio

Horas para completar

Aprox. 22 horas para completar

Sugerido: 8 hours/week...
Idiomas disponibles

Ruso (Russian)

Subtítulos: Ruso (Russian)

Programa - Qué aprenderás en este curso

Semana
1
Horas para completar
3 horas para completar

Корреляционный анализ. Простая линейная регрессия

Мы начнем разговор о методах численного описания связей между количественными величинами с коэффициентов ковариации и корреляции, которые позволяют оценить силу и направление связи. Затем вы узнаете, какую дополнительную информацию о связях можно получить, построив линейную модель зависимости между величинами. Вы научитесь интерпретировать коэффициенты регрессии и узнаете, когда и как можно использовать линейные модели для предсказаний на новых данных. К концу этого модуля вы научитесь подбирать уравнение линейной модели и строить ее график с доверительной областью....
Reading
14 videos (Total 97 minutos), 2 readings, 1 quiz
Video14 videos
Пример - размер мозга и IQ8m
Взаимосвязи между явлениями8m
Ковариация и корреляция9m
Тестирование статистической значимости коэффициента корреляции4m
Корреляционный анализ в R4m
Модели как отражение взаимосвязи6m
Простая линейная регрессия9m
Метод наименьших квадратов10m
Подбор коэффициентов линейной регресии в R6m
Стандартные ошибки коэффициентов регрессии7m
Доверительные интервалы коэффициентов и доверительная зона регрессии6m
Использование регрессии для предсказаний9m
Что мы знаем и что будет дальше3m
Reading2 lecturas
Обзор курса10m
Материалы: Корреляционный анализ. Простая линейная регрессия10m
Semana
2
Horas para completar
3 horas para completar

Проверка значимости и валидности линейных моделей

Построить линейную модель и записать ее уравнение - это только самое начало анализа. В этом модуле вы узнаете, как описывать результаты регрессионного анализа: как проверить статистическую значимость модели в целом или ее коэффициентов, оценить качество подгонки. У линейных моделей (вернее, у статистических тестов, которые для них используются), как у любого метода, есть свои ограничения. Вы узнаете, что это за ограничения и откуда они возникают. Графические методы диагностики, которыми мы будем пользоваться, универсальны для разных линейных моделей - больше практики поможет вам увереннее принимать решения. Разобравшись со всем этим, вы сможете написать на языке R полный скрипт для подбора, диагностики и представления результатов простой линейной регрессии....
Reading
13 videos (Total 89 minutos), 1 reading, 1 quiz
Video13 videos
Тестирование значимости коэффициентов регрессии при помощи t-теста7m
Тестирование значимости модели при помощи F критерия8m
Качество подгонки модели4m
Не стоит обольщаться. Зачем нужна диагностика моделей4m
Разновидности остатков6m
Влиятельные наблюдения и как с ними бороться8m
Линейность связи8m
Независимость наблюдений10m
Нормальное распределение остатков6m
Постоянство дисперсии остатков5m
Анализ остатков в R10m
Что мы знаем и что будет дальше3m
Reading1 lectura
Материалы: Проверка значимости и валидности линейных моделей10m
Semana
3
Horas para completar
3 horas para completar

Краткое введение в мир линейной алгебры

В этом модуле мы с вами погрузимся в самое сердце линейных моделей. Для этого вам придется изучить или вспомнить основы линейной алгебры. Мы обсудим разновидности матриц, способы их создания в R и основные операции с ними. Все это нам понадобится, чтобы разобраться, как устроена линейная регрессия изнутри. Вы узнаете, что такое модельная матрица, научитесь записывать уравнение линейной регрессии в виде матриц и находить его коэффициенты. Вы своими глазами увидите хэт-матрицу, которая позволяет получать предсказанные значения, и даже сможете ее вычислить вручную. Наконец, вы научитесь рассчитывать остаточную дисперсию, вариационно-ковариационную матрицу и использовать все это для того, чтобы строить доверительную зону регрессии. Потом эти знания помогут вам разобраться с устройством более сложных моделей: с дискретными предикторами, с другими распределениями остатков, с иным устройством вариационно-ковариационной матрицы....
Reading
11 videos (Total 81 minutos), 1 reading, 1 quiz
Video11 videos
Разновидности матриц3m
Основные действия с матрицами7m
Основы матричного умножения9m
Умножение двух матриц10m
Решение систем уравнений при помощи матриц12m
Линейная регрессия в матричном виде7m
Вычисление остатков в матричном виде5m
Строим график модели вручную6m
Доверительная зона регрессии в матричном виде10m
Что мы знаем и что будет дальше2m
Reading1 lectura
Материалы: Краткое введение в мир линейной алгебры10m
Semana
4
Horas para completar
3 horas para completar

Множественная линейная регрессия

Чаще всего связи между величинами устроены сложнее, чем это можно описать при помощи простой линейной регрессии. Множественная линейная регрессия используется, чтобы описать, как переменная-отклик зависит от нескольких предикторов. С появлением в модели множества предикторов у линейной регрессии появляется новое условие применимости - требование отсутствия мультиколлинеарности. В этом модуле вы узнаете, как можно выявить мультиколлинеарность и избежать ее. Наконец, нередко во множественных моделях переменных больше, чем это можно изобразить на плоскости, поэтому мы научим вас простым приемам, которые помогут создавать информативные графики даже в таком случае....
Reading
12 videos (Total 93 minutos), 1 reading, 1 quiz
Video12 videos
Пример - маркер рака простаты3m
Протокол анализа данных7m
Разведочный анализ в R17m
Модель множественной линейной регрессии и ее интерпретация11m
Мультиколлинеарность и другие условия применимости15m
Взаимодействия предикторов3m
Сравнение влияния отдельных предикторов7m
Качество подгонки модели множественной линейной регрессии3m
Визуализация модели: один предиктор10m
Визуализация модели: два предиктора5m
Что мы знаем и что будет дальше1m
Reading1 lectura
Материалы: Множественная линейная регрессия10m

Instructores

Avatar

Варфоломеева Марина Александровна

Ассистент
Кафедра Зоологии беспозвоночных
Avatar

Хайтов Вадим Михайлович

Доцент
Кафедра Зоологии беспозвоночных

Acerca de Saint Petersburg State University

The Saint-Petersburg University (SPbU) is a state university, located in Saint-Petersburg, Russia. Founded in 1724, SPbU is the oldest institution of higher education in Russia. At present, there are more than 30 000 students in SPbU studying 398 programmes...

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando compras un Certificado, obtienes acceso a todos los materiales del curso, incluidas las tareas calificadas. Una vez que completes el curso, se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes participar del curso como oyente sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.