Acerca de este Curso

3,947 vistas recientes
Certificado para compartir
Obtén un certificado al finalizar
100 % en línea
Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles
Restablece las fechas límite en función de tus horarios.
Nivel intermedio
Aprox. 14 horas para completar
Ruso (Russian)
Subtítulos: Ruso (Russian)

Habilidades que obtendrás

Data ModelingRegression ValidationR ProgrammingLinear RegressionStatistics
Certificado para compartir
Obtén un certificado al finalizar
100 % en línea
Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles
Restablece las fechas límite en función de tus horarios.
Nivel intermedio
Aprox. 14 horas para completar
Ruso (Russian)
Subtítulos: Ruso (Russian)

ofrecido por

Logotipo de Universidad Estatal de San Petersburgo

Universidad Estatal de San Petersburgo

Programa - Qué aprenderás en este curso

Semana
1

Semana 1

3 horas para completar

Корреляционный анализ. Простая линейная регрессия

3 horas para completar
14 videos (Total 97 minutos), 2 lecturas, 1 cuestionario
14 videos
Пример - размер мозга и IQ8m
Взаимосвязи между явлениями8m
Ковариация и корреляция9m
Тестирование статистической значимости коэффициента корреляции4m
Корреляционный анализ в R4m
Модели как отражение взаимосвязи6m
Простая линейная регрессия9m
Метод наименьших квадратов10m
Подбор коэффициентов линейной регресии в R6m
Стандартные ошибки коэффициентов регрессии7m
Доверительные интервалы коэффициентов и доверительная зона регрессии6m
Использование регрессии для предсказаний9m
Что мы знаем и что будет дальше3m
2 lecturas
Обзор курса10m
Материалы: Корреляционный анализ. Простая линейная регрессия10m
Semana
2

Semana 2

3 horas para completar

Проверка значимости и валидности линейных моделей

3 horas para completar
13 videos (Total 89 minutos), 1 lectura, 1 cuestionario
13 videos
Тестирование значимости коэффициентов регрессии при помощи t-теста7m
Тестирование значимости модели при помощи F критерия8m
Качество подгонки модели4m
Не стоит обольщаться. Зачем нужна диагностика моделей4m
Разновидности остатков6m
Влиятельные наблюдения и как с ними бороться8m
Линейность связи8m
Независимость наблюдений10m
Нормальное распределение остатков6m
Постоянство дисперсии остатков5m
Анализ остатков в R10m
Что мы знаем и что будет дальше3m
1 lectura
Материалы: Проверка значимости и валидности линейных моделей10m
Semana
3

Semana 3

3 horas para completar

Краткое введение в мир линейной алгебры

3 horas para completar
11 videos (Total 81 minutos), 1 lectura, 1 cuestionario
11 videos
Разновидности матриц3m
Основные действия с матрицами7m
Основы матричного умножения9m
Умножение двух матриц10m
Решение систем уравнений при помощи матриц12m
Линейная регрессия в матричном виде7m
Вычисление остатков в матричном виде5m
Строим график модели вручную6m
Доверительная зона регрессии в матричном виде10m
Что мы знаем и что будет дальше2m
1 lectura
Материалы: Краткое введение в мир линейной алгебры10m
Semana
4

Semana 4

3 horas para completar

Множественная линейная регрессия

3 horas para completar
12 videos (Total 93 minutos), 1 lectura, 1 cuestionario
12 videos
Пример - маркер рака простаты3m
Протокол анализа данных7m
Разведочный анализ в R17m
Модель множественной линейной регрессии и ее интерпретация11m
Мультиколлинеарность и другие условия применимости15m
Взаимодействия предикторов3m
Сравнение влияния отдельных предикторов7m
Качество подгонки модели множественной линейной регрессии3m
Визуализация модели: один предиктор10m
Визуализация модели: два предиктора5m
Что мы знаем и что будет дальше1m
1 lectura
Материалы: Множественная линейная регрессия10m

Acerca de Programa especializado: Просто о статистике (с использованием R)

Специализация “Просто о статистике” познакомит вас с основами прикладного анализа данных. Здесь не будет сложной математики, зато мы разберем на практике множество примеров. Вы научитесь описывать данные графически и при помощи описательных статистик; тестировать гипотезы, делая поправки на множественность тестов. При помощи линейных моделей вы сможете анализировать данные разных типов и проверять, выполняются ли допущения, лежащие в основе статистических методов. В частности, мы разберем, как устроены простая и множественная линейная регрессия, дисперсионный анализ, логистическая и Пуассоновская регрессия и т.д. Наконец, вы научитесь строить смешанные линейные модели, позволяющие работать с данными, когда благодаря дизайну сбора материала отдельные наблюдения оказываются взаимозависимы. Для статистического анализа мы будем использовать язык R -- универсальный язык науки о данных. Даже если вы раньше не писали программ, вы сможете научиться не только адаптировать существующие, но и создавать свои собственные скрипты для анализа данных. Каждый из курсов заканчивается практическим проектом, так что к концу специализации вы сможете собрать портфолио из разных видов анализа данных. Отчеты по проекту, выдержанные в традиции воспроизводимых исследований, вы научитесь создавать, не покидая R, при помощи пакетов knitr / rmarkdown....
Просто о статистике (с использованием R)

Preguntas Frecuentes

  • El acceso a las clases y las asignaciones depende del tipo de inscripción que tengas. Si tomas un curso en modo de oyente, verás la mayoría de los materiales del curso en forma gratuita. Para acceder a asignaciones calificadas y obtener un certificado, deberás comprar la experiencia de Certificado, ya sea durante o después de participar como oyente. Si no ves la opción de oyente:

    • es posible que el curso no ofrezca la opción de participar como oyente. En cambio, puedes intentar con una Prueba gratis o postularte para recibir ayuda económica.
    • Es posible que el curso ofrezca la opción 'Curso completo, sin certificado'. Esta opción te permite ver todos los materiales del curso, enviar las evaluaciones requeridas y obtener una calificación final. También significa que no podrás comprar una experiencia de Certificado.
  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

  • Si estás suscrito, obtienes una prueba gratis de 7 días, que podrás cancelar cuando desees sin ningún tipo de penalidad. Una vez transcurrido ese tiempo, no realizamos reembolsos. No obstante, puedes cancelar tu suscripción cuando quieras. Consulta nuestra política completa de reembolsos.

  • Sí, Coursera ofrece ayuda económica a los estudiantes que no pueden pagar la tarifa. Solicítala haciendo clic en el enlace de Ayuda económica que está debajo del botón “Inscribirse” a la izquierda. Se te pedirá que completes una solicitud. Recibirás una notificación en caso de que se apruebe. Deberás completar este paso para cada uno de los cursos que forman parte del Programa especializado, incluido el proyecto final. Obtén más información.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.