Acerca de este Curso
288,661 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel principiante

Aprox. 28 horas para completar

Sugerido: 8 hours/week...

Ruso (Russian)

Subtítulos: Ruso (Russian)
User
Los estudiantes que toman este Course son
  • Geologists
  • Process Analysts
  • Scientists
  • Data Analysts
  • Risk Managers

Habilidades que obtendrás

ScipyStatisticsPython ProgrammingNumpy
User
Los estudiantes que toman este Course son
  • Geologists
  • Process Analysts
  • Scientists
  • Data Analysts
  • Risk Managers

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel principiante

Aprox. 28 horas para completar

Sugerido: 8 hours/week...

Ruso (Russian)

Subtítulos: Ruso (Russian)

Programa - Qué aprenderás en este curso

Semana
1
8 horas para completar

Введение

19 videos (Total 115 minutos), 12 lecturas, 7 cuestionarios
19 videos
Как устроена специализация и зачем ее проходить3m
Как устроен этот курс и в чем его главная особенность1m
МФТИ1m
Что такое Python и почему мы выбрали именно его6m
Как установить Анаконду. Windows3m
Как установить Анаконду. Linux4m
Как установить Анаконду. Mac3m
Что такое ноутбуки и как ими пользоваться10m
Типы данных16m
Циклы, функции, генераторы, list comprehension13m
Чтение данных из файлов11m
Запись файлов, изменение файлов8m
Функции и их свойства6m
Предел и производная4m
Геометрический смысл производной2m
Производная сложной функции2m
Задача нахождения экстремума3m
Вторая производная и выпуклость5m
12 lecturas
Формат специализации и получение сертификата2m
МФТИ10m
Немного о Yandex10m
Python FAQ10m
Forum&Chat10m
Знакомство с IPython Notebook10m
Конспект30m
Типы данных (ipython notebook)10m
Чтение данных из файлов (ipython notebook)10m
Запись файлов, изменение файлов (ipython notebook)10m
Конспект30m
Конспект10m
6 ejercicios de práctica
Работа с IPython Notebook10m
Знакомство с Python10m
Работа с файлами в Python10m
Синтаксис Python10m
Функции и экстремумы10m
Производная и её применения10m
Semana
2
8 horas para completar

Библиотеки Python и линейная алгебра

14 videos (Total 97 minutos), 8 lecturas, 10 cuestionarios
14 videos
Pandas. Индексация и селекция13m
Первое знакомство NumPy, SciPy и Matplotlib16m
Решение оптимизационных задач в SciPy4m
Знакомство с линейной алгеброй5m
Векторные пространства3m
Линейная независимость6m
Операции в векторных пространствах6m
Зачем нужны матрицы?5m
Матричные операции7m
Ранг и определитель5m
Системы линейных уравнений4m
Особые виды матриц4m
Собственные числа и векторы3m
8 lecturas
Pandas. DataFrame (ipython notebook)10m
Pandas. Индексация и селекция (ipython notebook)10m
Первое знакомство с Numpy, Scipy и Matplotlib (ipython notebook)10m
Оптимизация в Scipy (ipython notebook)10m
NumPy: векторы и операции над ними10m
Конспект30m
NumPy: матрицы и операции над ними10m
Конспект30m
9 ejercicios de práctica
Pandas10m
Numpy10m
Pandas, Numpy, Scipy, Matplotlib10m
Базовые понятия линейной алгебры10m
Линейная независимость и размерность10m
Векторные пространства и NumPy10m
Что можно делать с матрицами?10m
Разрешимость систем линейных уравнений и ранги10m
Матрицы и NumPy10m
Semana
3
6 horas para completar

Оптимизация и матричные разложения

12 videos (Total 47 minutos), 3 lecturas, 7 cuestionarios
12 videos
Применение градиента3m
Производная по направлению2m
Касательная плоскость и линейное приближение2m
Направление наискорейшего роста2m
Оптимизация негладких функций4m
Метод имитации отжига4m
Генетические алгоритмы и дифференциальная эволюция4m
Нелдер-Мид3m
Разложения матриц в произведение, сингулярное разложение3m
Приближение матрицей меньшего ранга5m
Связь сингулярного разложения и приближения матрицей меньшего ранга6m
3 lecturas
Конспект30m
Конспект30m
Конспект30m
6 ejercicios de práctica
Частные производные10m
Градиент и его применения10m
Повторение: гладкость и градиентный спуск10m
Методы оптимизации в негладких задачах10m
Повторение линейной алгебры10m
Матричные разложения10m
Semana
4
6 horas para completar

Случайность

11 videos (Total 59 minutos), 7 lecturas, 7 cuestionarios
11 videos
Свойства вероятности3m
Условная вероятность2m
Дискретные случайные величины4m
Непрерывные случайные величины7m
Оценка распределения по выборке6m
Важные характеристики распределений6m
Важные статистики5m
Центральная предельная теорема5m
Доверительные интервалы6m
Бонусное видео6m
7 lecturas
Работа со случайными величинами (ipython notebook)10m
Конспект30m
Оценка распределения по выборке (ipython notebook)10m
Конспект30m
Материалы к бонусному видео10m
Список литературы10m
Финальные титры10m
6 ejercicios de práctica
Вероятность10m
Случайные величины10m
Вероятность и случайные величины20m
Распределения, параметры и оценки10m
ЦПТ и доверительные интервалы10m
Статистики20m
4.8
720 revisionesChevron Right

39%

comenzó una nueva carrera después de completar estos cursos

43%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

26%

consiguió un aumento de sueldo o ascenso

Principales revisiones sobre Математика и Python для анализа данных

por GDAug 9th 2018

Лучший вводный курс, который я видел. Есть мелкие огрехи в изложении математической части, но это ерунда по сравнению с четкостью и полнотой изложения программистской части и обилием примеров. Спасибо

por KAFeb 16th 2016

Прошел много курсов по Data Science, этот курс не разочаровал. Подается в лучших западных традициях. Неформально объясняется материал, много примеров. Надеюсь, и дальше специализация не подкачает.

Acerca de Instituto de Física y Tecnología de Moscú

Московский физико-технический институт (Физтех) является одним из ведущих вузов страны и входит в основные рейтинги лучших университетов мира. Институт обладает не только богатой историей – основателями и профессорами института были Нобелевские лауреаты Пётр Капица, Лев Ландау и Николай Семенов – но и большой научно-исследовательской базой. Основой образования в МФТИ является уникальная «система Физтеха», сформулированная Петром Капицей: кропотливый отбор одаренных и склонных к творческой работе абитуриентов; участие в обучении ведущих научных работников; индивидуальный подход к отдельным студентам с целью развития их творческих задатков; воспитание с первых шагов в атмосфере технических исследований и конструктивного творчества с использованием потенциала лучших лабораторий страны. Среди выпускников МФТИ — нобелевские лауреаты Андрей Гейм и Константин Новоселов, основатель компании ABBYY Давид Ян, один из авторов архитектурных принципов построения вычислительных комплексов Борис Бабаян и др....

Acerca de Yandex

Yandex is a technology company that builds intelligent products and services powered by machine learning. Our goal is to help consumers and businesses better navigate the online and offline world....

Acerca de Programa especializado Машинное обучение и анализ данных

Мы покажем, как проходит полный цикл анализа, от сбора данных до выбора оптимального решения и оценки его качества. Вы научитесь пользоваться современными аналитическими инструментами и адаптировать их под особенности конкретных задач. В рамках специализации вы освоите основные темы, необходимые в работе с большим массивом данных, в т.ч. современные методы классификации и регрессии, поиск структуры в данных, проведение экспериментов, построение выводов, базовая фундаментальная математика, основы программирования на Python. Мы разберём, как построить рекомендательную систему, оценить эмоциональную окраску текста, спрогнозировать спрос на товар, оценить вероятность клика по рекламе и т.д. В финале вам потребуется выполнить проект собственной системы, решающей любую актуальную для бизнеса задачу. Результатом будет наглядная работающая модель, которую вы сможете использовать в вашей повседневной работе или продемонстрировать на собеседовании. Все, прошедшие специализацию, могут принять участие в Программе трудоустройства. Если вы заинтересованы в новых проектах, новых перспективах и возможностях - пройдите обучение по Специализации и подайте заявку....
Машинное обучение и анализ данных

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.