Acerca de este Curso
5.0
10 calificaciones
1 revisiones

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 30 horas para completar

Sugerido: 8 weeks of study...

Inglés (English)

Subtítulos: Inglés (English)

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 30 horas para completar

Sugerido: 8 weeks of study...

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
4 horas para completar

The basics of the set theory. Functions in Rn

Week 1 of the Course is devoted to the main concepts of the set theory, operation on sets and functions in Rn. Of special attention will be level curves. Also in this week introduced definitions of sequences, bounded and compact sets, domain and limit of the function. Also from this week students will grasp the concept of continuous function....
11 videos (Total 116 minutos), 1 quiz
11 videos
1.1. Definitions and examples of sets14m
1.2. Operations on sets9m
1.3. Open balls in Rn9m
1.4. Sequences in Rn. Closed sets.10m
1.5. Bounded and compact sets10m
1.6. Functions and level curves in Rn16m
1.7. Domain and limit of a function. Continuous functions.13m
1.8. Continuity of a function. Weierstrass theorem.13m
1.9. Composite function.12m
1.10. Continuity of a composite function3m
Semana
2
5 horas para completar

Differentiation. Gradient. Hessian.

Week 2 of the Course is devoted to the main concepts of differentiation, gradient and Hessian. Of special attention is the chain rule. Also students will understand economic applications of the gradient....
13 videos (Total 115 minutos), 2 quizzes
13 videos
2.2. Example of differentiation. Cobb-Douglas function.9m
2.3. Tangent plane.7m
2.4. Total differential.7m
2.5. Chain rule for multivariate functions.8m
2.6. Gradient of the function.9m
2.7. Economic applications of the gradient.9m
2.8. Equation of a circumference. Smooth curves.13m
2.9. Chain rule for differentiation.10m
2.10. Linear approximation. Example of tangent plane for particular function.10m
2.11. Second-order derivatives.10m
2.12. Young's Theorem.5m
2.13. Hessian matrix.5m
1 ejercicios de práctica
Limits. Derivatives. Continuitys
Semana
3
4 horas para completar

Implicit Function Theorems and their applications.

Week 3 of the Course is devoted to implicit function theorems. In this week three different implicit function theorems are explained. This week students will grasp how to apply IFT concept to solve different problems....
12 videos (Total 93 minutos), 1 quiz
12 videos
3.2. Implicit Function Theorem.5m
3.3. Applications of the Implicit Function Theorem (part 1).10m
3.4. Applications of the Implicit Function Theorem (part 2).7m
3.5. Gradient is perpendicular to a level curve of a function.11m
3.6. Implicit function theorem for the function of many variables.6m
3.7. Example of application of the IFT for the function of many variables.8m
3.8. Implicit Function Theorem for the system of implicit functions. Jacobian matrix.10m
3.9. Example of application IFT for the system of implicit functions (part 1).8m
3.10. Example of application IFT for the system of implicit functions (part 2).7m
3.11. Example of application in microeconomics.6m
3.12. Cramer's rule.2m
Semana
4
5 horas para completar

Unconstrained and constrained optimization.

Week 4 of the Course is devoted to the problems of constrained and unconstrained optimization. Of special attention are quadratic forms, critical points and their classification....
15 videos (Total 112 minutos), 2 quizzes
15 videos
4.2. Global max. Local max. Saddle point.9m
4.3. Unconstrained optimization.9m
4.4. Critical point. Taylor's formula.12m
4.5. Quadratic forms. Positive definiteness. Negative definiteness.7m
4.6. Sylvester's criterion (part 1).7m
4.7. Sylvester's criterion (part 2).5m
4.8. Examples of Hessians (part 1).7m
4.9. Example of Hessians (part 2).4m
4.10. Sufficient condition for a critical point to be a local maximum, a local minimum and neither of both.7m
4.11. Examples of finding and classification of critical points (part 1).6m
4.12. Examples of finding and classification of critical points (part 2).4m
4.13. Constrained optimization.9m
4.14. Lagrangian.5m
4.15. Example of constrained optimization problem.4m
1 ejercicios de práctica
Partial derivatives and unconstrained optimization.s
Semana
5
4 horas para completar

Constrained optimization for n-dim space. Bordered Hessian.

Week 5 of the Course is devoted to the extension of the constrained optimization problem to the n-dimensional space. This week students will grasp how to apply bordered Hessian concept to classification of critical points arising in different constrained optimization problems....
13 videos (Total 99 minutos), 1 quiz
13 videos
5.2. Weierstrass theorem. Compact sets.7m
5.3. Bordered Hessian.9m
5.4. Constrained optimization in general case (part 1).5m
5.5. Constrained optimization in general case (part 2).6m
5.6. Application of the bordered Hessian in the constrained optimization.7m
5.7. Generalization of the constrained optimization problem for the n variables case.8m
5.8. Example of constrained optimization for the case of more than two variables (part 1).7m
5.9. Example of constrained optimization for the case of more than two variables (part 2).9m
5.10. Example of constrained optimization problem on non-compact set.5m
5.11. Theorem for determining definiteness (positive or negative) or indefiniteness of the bordered matrix.5m
5.12. Example of application bordered Hessian technique for the constrained optimization problem.8m
5.13. Example of violating NDCQ.10m
Semana
6
3 horas para completar

Envelope theorems. Concavity and convexity.

Week 6 of the Course is devoted to envelope theorems, concavity and convexity of functions. This week students will understand how to interpret Lagrange multiplier and get to learn the criteria of convexity and concavity of functions in n-dimensional space....
11 videos (Total 85 minutos), 1 quiz
11 videos
6.2. Envelope Theorem for constrained optimization.4m
6.3. Examples of the Envelope Theorem application (part 1).7m
6.4. Examples of the Envelope Theorem application (part 2).6m
6.5. Interpretation of the Lagrangian multiplier.10m
6.6. Relaxing assumptions using second order conditions.8m
6.7. Concave and convex functions.7m
6.8. Concave and convex functions in n-dimensional case.7m
6.9. Inequality for concave function in n-dimensional space.9m
6.10. Criteria of concavity and convexity of the function in n-dimensional space.5m
6.11. Properties of concave functions.7m
Semana
7
4 horas para completar

Global extrema. Constrained optimization with inequality constraints.

Week 7 of the Course is devoted to identification of global extrema and constrained optimization with inequality constraints. This week students will grasp the concept of binding constraints and complementary slackness conditions....
11 videos (Total 96 minutos), 1 quiz
11 videos
7.2. How to identify global extrema? (part 2)10m
7.3. How to identify global extrema? (part 3)12m
7.4. How to identify global extrema? (part 4)10m
7.5. Constrained optimization with inequality constraints.8m
7.6. Binding constraints. Complementary slackness conditions.5m
7.7. Constrained optimization problem with inequalities for n-dimensional space.7m
7.8. Constrained optimization problem with inequalities. Theorem.6m
7.9. Example of solving constrained optimization problem with inequalities (part 1).9m
7.10. Example of solving constrained optimization problem with inequalities (part 2).10m
7.11. Example of solving constrained optimization problem with inequalities (part 3).3m
Semana
8
4 horas para completar

Kunh-Tucker conditions. Homogeneous functions.

Week 8 of the Course is devoted to Kuhn-Tucker conditions and homogenous functions. This week students will find out how to use Kuhn-Tucker conditions for solving various economic problems....
9 videos (Total 80 minutos), 2 quizzes
9 videos
8.2. Solving consumer choice problem using Kuhn-Tucker conditions (part 1).9m
8.3. Solving consumer choice problem using Kuhn-Tucker conditions (part 2).11m
8.4. Solving minimization costs problem using Kuhn-Tucker conditions (part 1).9m
8.5. Solving minimization costs problem using Kuhn-Tucker conditions (part 2).7m
8.6. Homogeneous functions.6m
8.7. Homogeneous functions. Two propositions.5m
8.8. Income-consumption curve.10m
8.9. Euler's Theorem.12m
1 ejercicios de práctica
Kuhn-Tucker conditions. Concavity, convexity.s

Instructores

Avatar

Kirill Bukin

Associate Professor, Candidate of sciences (phys.-math.)
Faculty of Economic Sciences, Department of Theoretical Economics

Acerca de National Research University Higher School of Economics

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more. Learn more on www.hse.ru...

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando compras un Certificado, obtienes acceso a todos los materiales del curso, incluidas las tareas calificadas. Una vez que completes el curso, se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes participar del curso como oyente sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.