Chevron Left
Volver a Machine Learning: Clustering & Retrieval

Opiniones y comentarios de aprendices correspondientes a Machine Learning: Clustering & Retrieval por parte de Universidad de Washington

4.6
estrellas
2,301 calificaciones

Acerca del Curso

Case Studies: Finding Similar Documents A reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover? In this third case study, finding similar documents, you will examine similarity-based algorithms for retrieval. In this course, you will also examine structured representations for describing the documents in the corpus, including clustering and mixed membership models, such as latent Dirichlet allocation (LDA). You will implement expectation maximization (EM) to learn the document clusterings, and see how to scale the methods using MapReduce. Learning Outcomes: By the end of this course, you will be able to: -Create a document retrieval system using k-nearest neighbors. -Identify various similarity metrics for text data. -Reduce computations in k-nearest neighbor search by using KD-trees. -Produce approximate nearest neighbors using locality sensitive hashing. -Compare and contrast supervised and unsupervised learning tasks. -Cluster documents by topic using k-means. -Describe how to parallelize k-means using MapReduce. -Examine probabilistic clustering approaches using mixtures models. -Fit a mixture of Gaussian model using expectation maximization (EM). -Perform mixed membership modeling using latent Dirichlet allocation (LDA). -Describe the steps of a Gibbs sampler and how to use its output to draw inferences. -Compare and contrast initialization techniques for non-convex optimization objectives. -Implement these techniques in Python....

Principales reseñas

JM

16 de ene. de 2017

Excellent course, well thought out lectures and problem sets. The programming assignments offer an appropriate amount of guidance that allows the students to work through the material on their own.

BK

24 de ago. de 2016

excellent material! It would be nice, however, to mention some reading material, books or articles, for those interested in the details and the theories behind the concepts presented in the course.

Filtrar por:

176 - 200 de 381 revisiones para Machine Learning: Clustering & Retrieval

por Arash A

5 de ene. de 2017

por David F

21 de oct. de 2016

por Nitish V

29 de oct. de 2017

por Rahul G

13 de jun. de 2017

por Stanislav B

15 de abr. de 2020

por Jason G

9 de ago. de 2017

por Krisda L

19 de jul. de 2017

por felix a f a

8 de ago. de 2016

por Feiwen C ( C I

1 de jun. de 2017

por Kan C Y

19 de mar. de 2017

por parag_verma

7 de ene. de 2020

por PRAVEEN R U

27 de dic. de 2018

por Miao J

1 de jul. de 2016

por Veer A S

23 de mar. de 2018

por Ted T

29 de jul. de 2017

por Dmitri T

4 de dic. de 2016

por Veera K R

6 de abr. de 2020

por Snehotosh B

3 de dic. de 2016

por kripa s

30 de abr. de 2019

por Shuang D

29 de jun. de 2018

por Garvish

14 de jun. de 2017

por RAJIT N

21 de sep. de 2020

por Ce J

26 de jun. de 2017

por 李紹弘

22 de ago. de 2017

por Nada M

11 de jun. de 2017