Volver a Redes neurales y aprendizaje profundo

4.9

estrellas

68,975 calificaciones

•

13,091 revisiones

If you want to break into cutting-edge AI, this course will help you do so. Deep learning engineers are highly sought after, and mastering deep learning will give you numerous new career opportunities. Deep learning is also a new "superpower" that will let you build AI systems that just weren't possible a few years ago.
In this course, you will learn the foundations of deep learning. When you finish this class, you will:
- Understand the major technology trends driving Deep Learning
- Be able to build, train and apply fully connected deep neural networks
- Know how to implement efficient (vectorized) neural networks
- Understand the key parameters in a neural network's architecture
This course also teaches you how Deep Learning actually works, rather than presenting only a cursory or surface-level description. So after completing it, you will be able to apply deep learning to a your own applications. If you are looking for a job in AI, after this course you will also be able to answer basic interview questions.
This is the first course of the Deep Learning Specialization....

Jun 30, 2018

Very good course to start Deep learning. But you need to have the basic idea first. I would suggest to do the Stanford Andrew Ng Machine Learning course first and then take this specialization courses

Jan 18, 2020

Very structured approach to developing a neural network which I believe I can use as foundation for any project regardless its complexity. Thanks professor Andrew Ng and the team for their dedication.

Filtrar por:

por Parth S

•Aug 10, 2018

Coding Exercise Were quite simple, a full length assignment would have been better.

por Ashkan A e A

•Nov 13, 2018

Too easy

por Sundar S

•Nov 27, 2017

Fantastic introduction to deep NNs starting from the shallow case of logistic regression and generalizing across multiple layers. The material is very well structured and Dr. Ng is an amazing teacher.

por Serge G

•Jul 15, 2019

Dear Andrew! Thank you so very much for making me belive in myself as a machine learning engineer. Your lectures & excercises are like "shoulders of Giants" on which a good student can stand out high.

por Anil L G

•Mar 07, 2019

I understand all those thing which you have discussed in this course and I also like the way first tell story of concet and assign assignment. Now I fall in love with neural network and deep learning.

por nikcojeanian

•Dec 02, 2017

Programming assignment is too simple

por Mohammad G H

•Oct 01, 2018

Very basic level

por Niloufar Y

•Jan 12, 2018

not satisfied

por Antonio C D

•Jan 19, 2019

A good mix of theory and practice. The learning curve was perfect for me, and the course schedule is right if you study the material and work through the assignments in your spare time. Assignments are very well structured, I feel that trying to create the same implementations by myself (i.e. without the guides in the assignments and intermediate tests / check) would have taken 10x long.

por Nikhil D K

•May 12, 2019

This is a good review of the concepts. It helped even more once I finished the course and reflected on the material by working out the equations for back propagation by my own hand. Looking forward to the next course in the series.

por Jerry P

•Feb 03, 2019

Excellent course. Challenging, but doable. Andrew Ng is a great teacher. I learned about logistic regression, forward and backward propagation, code vectorization with numpy, activation functions, and many other topics.

por Juan P

•Feb 12, 2018

I would love some pointers to additional references for each video. Also, the instructor keeps saying that the math behind backprop is hard. What about an optional video with that? Otherwise, awesome!

por Harsh T

•Jan 28, 2019

The course is good and it helps to clear the basic concepts of Neural Networks,

And the interactive assignments are just Awesome

por Juan A O G

•Aug 30, 2018

TL;DR: It's a good course for people who are not familiar with neural nets. Otherwise, it feels kind of repetitive (I completed the course in 4 days)

Pros: Learn to implement efficient feedforward neural networks from scratch, by taking advantage of vectorized operations and caches; good understanding of how neural nets work and the reasons of their success; I loved how Dr. Andrew explained why we must initialize the weights to some small random numbers (I already knew neural nets before this course)

Cons: I expected to build neural nets in Tensorflow (after learning how to implement them from scratch); It'd have been good to include a gradient check (by computing the numerical gradient) to foolproof the backward pass; sometimes the explanations felt kind of repetitive (e.g. continuously going from one training example to the whole training batch). I would have just sticked to the batch learning after it was introduced

por Jorge E C

•Oct 16, 2017

This course is good to just learn the terms and the basic aspects on architecture of deep learning. There is hardly any big explanations on the mathematical foundations of the topic which are of extreme importance to understand it.

It is a course for someone that dos not know much about neural networks or mathematics.

Is unfortunate that lead researcher in the area is able to say that it is not necesary to understand what a derivative is to be able to understand deep learning and the algorithm to update the weights of the network. I guess only for a first time course that is true, but I was expecting more from this course.

por Miriam G

•May 18, 2018

Really just mathematical background knowledge. Nothing you would ever need, since there is keras. No own thinking during assignments neccessary, either.

por Thomas M

•Jul 16, 2018

Course starts with a lot of math without any context what all those computations and parameters are used for or what they have to do with N

por Loren Y

•Feb 06, 2019

The assignments are not good. Too easy and too much handholding. Also lots of technical issues.

por Younes A

•Dec 07, 2017

Wouldn't recommend because of the very low quality of the assignments, but I don't regret taking them because the content is great. Seriously the quality of deeplearning.ai courses is the lowest I have ever seen! Glitches in videos, wrong assignments (both notebooks and MCQs), and no valuable discussions on the forums. Too bad Prof Ng couldn't get a competent team to curate his content for him. For such an basic level of content, you will find many other courses that are far better.

por Andrew H

•Apr 28, 2019

Not enough explanation or support to complete the very vaguely worded assignments in anything like the specified timescales.

I respect the source of this course but as a teaching resource it is really very poor.

por Kenneth T

•Jun 05, 2019

Great course, definitely taught me the basics of Neural Networks and Deep Learning as it's supposed to. Assignments are quite engaging when you try to thoroughly solve them. Even with minimal mathematics, the course will handhold you the whole way. Definitely a great course for anyone with minimal programming to get into. For me, the most challenging part was understanding how Python syntax worked with numpy. If you are taking this course I recommend taking your time with implementing the projects, they can definitely give you an understanding behind the logic of neural networks by following the code. The instructor is quite nice and warm, sometimes a bit dry, but nonetheless, he seems very warm; wanting to teach the next generation of individuals to do ML/AI. The course does have a few downsides such as how buggy the iPython notebook can be. This is the programming environment you will be using. An the video quality isn't always the best with the audio, but overall the content was presented in a great way and prepared in a manner in which you learn one step at a time.

por William M

•Sep 04, 2017

I really enjoyed taking this course. I have taken one of Andrew's courses before, and they keep getting better. I have a background in development, and appreciated the use of python over octave. Andrew consistently strives to provide an intuitive feel for the topics he is presenting. The fact that he is able to provide a complex subject in a simple manner speaks to his mastery of the subject.

The course contained a great mix of theory and practical application of those theories. I'm looking forward to the next course.

por Malte B

•Apr 08, 2019

Great course to get a practical understanding of (Deep) Neural Networks. I would recommend to take Andrew Ngs "Machine Learning" course (also available on Coursera) beforehand, because the latter is much more rigorous when it comes to matrices operations. Thus it is unfortunately possible to just fill in the provided code in this course but don't really understand what it does.

por WALEED E

•Dec 17, 2018

This course formed a concrete background in building multi-layers neural network from scratch. The best advantage of this course is I was able to immediately apply the knowledge I gained into real world problem like humanoid navigation towards known targets. Illustration is great in terms of mathematical explanation and coding in a step by step walk through.

por Abdessalem H

•Dec 03, 2017

This is one of the courses I enjoyed the most. For someone who has little to no knowledge in calculus and programming, I found the course is well tailored for all kinds of background. The pace is not so fast and Andrew is making it so easy even for beginners to grasp the new jargon and formulae. Thank you Coursera. Thank you Andrew.

- IA para todos
- Introducción a TensorFlow
- Redes neurales y aprendizaje profundo
- Algoritmos, parte 1
- Algoritmos, parte 2
- Aprendizaje Automático
- Aprendizaje automático con Python
- Aprendizaje automático con Sas Viya
- Programación R
- Introducción a la programación con Matlab
- Análisis de datos con Python
- Aspectos básicos de AWS: El paso a la nube nativa
- Aspectos básicos de la plataforma en la nube de Google
- Ingeniería de confiabilidad del sitio
- Hablar inglés de manera profesional
- La ciencia del bienestar
- Aprendiendo a aprender
- Mercados financieros
- Prueba de hipótesis en el área de la salud pública
- Aspectos básicos del liderazgo diario

- Aprendizaje profundo
- Python para todos
- Ciencia de Datos
- Ciencias de los Datos Aplicada con Python
- Aspectos básicos de los negocios
- Arquitectura con Google Cloud Platform
- Ingeniería de datos en la plataforma en la nube de Google
- Excel para MySQL
- Aprendizaje automático avanzado
- Matemática aplicada al aprendizaje automático
- Automóviles de auto conducción
- Revolución de la cadena de bloques para la empresa
- Análisis comercial
- Habilidades de Excel aplicadas para los negocios
- mercadeo digital
- Análisis estadístico con R para el área de la salud pública
- Aspectos básicos de la inmunología
- Anatomía
- Gestión de la innovación y del pensamiento de diseño
- Aspectos básicos de la psicología positiva

- Soporte de TI de Google
- Especialista en compromiso con el cliente de IBM
- Ciencia de datos de IBM
- Administrador de proyectos aplicado
- Certificado profesional de IA aplicada de IBM
- Aprendizaje automático para análisis
- Análisis y visualización de datos espaciales
- Gestión e ingeniería de construcción
- Diseño instruccional

- Maestría en Ciencia de Datos
- Licenciatura en Ciencias de la Computación
- Títulos de Ciencias de la Computación e Ingeniería
- Maestría en Aprendizaje Automático
- Maestría en Administración de Empresas y títulos de estudios de negocios
- Maestría en Ingeniería Eléctrica
- Maestría en Salud Pública
- Maestría en Tecnología de la Información