Volver a Redes neurales y aprendizaje profundo

estrellas

109,727 calificaciones

•

21,838 reseña

In the first course of the Deep Learning Specialization, you will study the foundational concept of neural networks and deep learning.
By the end, you will be familiar with the significant technological trends driving the rise of deep learning; build, train, and apply fully connected deep neural networks; implement efficient (vectorized) neural networks; identify key parameters in a neural network’s architecture; and apply deep learning to your own applications.
The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

AS

10 de jul. de 2021

I have learned a lot of thing in deep learning such as neural network , deep neural network , forward propagation , backward propagation , broadcasting and vectorization.This is very important for me.

RG

6 de sep. de 2020

I have learned a lot from this detailed and well-structured course. Programing assignments were very sophisticatedly designed. It was challenging, fun, and most importantly it delivered what is aimed.

Filtrar por:

por Keely W

•11 de mar. de 2018

I'm LOVING these classes!! The instructor, Andrew, is excellent, and the material is presented in a logical progression so that it's not too overwhelming. It definitely helps to have some background in math, namely Calculus and Linear Algebra. The programming assignments can be a bit tough if you don't truly understanding which Linear Algebra methods to use, i.e. dot product multiplication vs element-wise multiplication, but usually the instructions are good. However, I found myself having to look up a lot of Python and Linear Algebra basics online (Stack Overflow is your friend in this case.)

Definitely a challenging set of courses in the Deep Learning Specialization, but very well presented, and extremely interesting (at least to me.)

por Sarvasv A

•22 de jun. de 2020

THE best intro to deep learning course out there! I would recommend it 10/10. You get to develop neural networks from scratch, using just Numpy... no TensorFlow or sci-kit learn. It might take time to think about the code structure and dimensions of matrices of various parameters, but in the end, it only helps in developing a better understanding of how NNs work beneath the TensorFlow/PyTorch (or any other high-level ML library out there) models in practice. Although the meat of NNs, i.e. calculus, is not really required to complete the course (they provide you with all derivatives required), I'd suggest trying working it all out on paper/iPad/tablet by hand. It's as important as coding itself if you wanna delve further in the field.

por Gary K N

•28 de feb. de 2020

This course allows you to quickly catch up to the fundamentals of building multi-layer NN models, by viewing it as stacks and layers of logistic regression units. You will sail through this course if you already know logistic regression. Even though nowadays most people don't even need to understand how the calculus actually works beyond a basic intuition, the calculus required for back propagation are well explained; detailed yet presented well for people with high school calculus to understand. The exercises are very simple with an objective not to test your ability to write code, but your understanding of how the steps are put together. The answers are practically given to you, you just have to put them together in the right way.

por Akhil C V

•9 de ago. de 2018

This course is phenomenal. Even as someone who's spent almost a year working as a deep learning engineer, there were still many lectures I found incredibly useful. I believe the matrix dimension lecture will permanently change the way I structure the code for my neural networks in the future. If I had one criticism it'd be that it could perhaps get progressively harder. I love the ultimate task (of a logistic classifier), but as we go from week to week, I think there could have been less hints. Even by the end of the course, I felt like I was being spoon fed through the programming assignments. This is a problem, because I'm less confident than I would have been if I'd figured out the Lmodel forward propagation (for example) myself.

por Ferry v A

•7 de feb. de 2021

I'd recommend this course to people who are familiar with basic obect terminology used in computer science (ie tuples, arrays) and know how to code in atleast one programming language. Personally, I'm not well versed in maths beyond the high school level and didn't know any python before starting this course. Andrew takes his time to explain how the mathematical notations work however, and if you take notes during his lecture it's often not difficult to find an implementation in python. If any more advanced mathematics from linear algebra or calculus come up it is patiently explained.

The course strikes a good balance between teaching the mathematical details of neural networks and applying them hands on when building a model.

por Branislav N

•12 de abr. de 2020

This is an amazing course. As someone who is a beginner in neural networks and AI in general, I really enjoyed this course. The main plus of this course is that it offers straightforward hands-on programming exercises in Python with very clear instructions and meaningful sub-exercise. The fact that the course is implemented in Python is a huge plus, even for beginners in Python programming. This course enables you to experiment with your own data, after you have learned how to build a deep neural network. Indeed, I did not expect to build confidence that quickly and have own ideas about deep learning projects, after this course. This was a pleasant surprise and I will definitely continue going through the whole specialization.

por Gokula K R

•19 de oct. de 2019

Well, the concepts were crystal clear. To be honest, I got them theoretically but when i began coding, I could see that I could not connect few pieces here and there as there was the template given and I just had to fill in the blanks with whatever is given at the beginning of the module. I would suggest to let the learners code few functions from scratch, so that we could know what parameters to input, and what to return in the end. Also I think suggesting learners to visit documentations of few important modules like numpy, pandas, matplotlib etc. and instruct the learners to import them by themselves than importing them straight away at the beginning. Hope this would inculcate the developer culture and practice to beginners

por german b

•28 de jun. de 2021

I have just finished the course. It was a great course overall. The videos provide the right amount of information in a very didactic way. His mathematical approach to the problem makes this course a good choice for those with not much background in linear algebra. The quizzes are a very good tool to wrap the fundamentals of every week and all the answers are addressed in the videos. Now, the programming assignments were the best of all the course. Each of the programming exercises gives you the tools and a step-by-step explanation to build functional codes. Every programming exercise that you complete helps you to understand the problem deeper and deeper! Can't wait to continue with the second course of the specialization!

por Anton V

•30 de may. de 2018

This is a great introductory course to deep learning and neural networks in general. The lectures are brilliant and so are the assignments. Best experience I've had with an online course. This one actually makes you want to complete it. I had some Python experience and a very foggy idea of how neural networks work after watching some youtube videos, however this course gives some really nice foundation for future development in the area. The assignments are easy to follow and give you code to use with things to fill in based on your understanding. This is a good way to get you started, I can now use those ideas to play around with a personal project and learn more. Looking forward to the rest of the courses in the series.

por Diego V R

•26 de ago. de 2018

After Prof. Ng's Machine Learning Course, this new course appears at our Coursera's dashboard. I, again, enjoyed listening to Andrew's lectures. My personal recommendation is to first tackle Stanford's ML course and then this one. However, if you can only pick one and you are doubting between Stanford's Machine Learning Course and this one, pick this one, since it covers neural networks with way more detail than the original one. However, take into account that other machine learning related topics do not appear here such as dimensionality reduction techniques like PCA. Amazing treasure to the Deep Learning beginners out there. Thank you Prof. Ng and every one else who made this possible (The whole deeplearning.ai team).

por Sheyem K

•3 de sep. de 2017

Definitely one of the best online classes I've taken. Even having studied this material a little bit before hand, I learned a lot--mainly in ways of building an intuition of why certain functions are chosen, or work the way they do. In this respect, I think there are few better at getting to the core of teaching: simple is better.

I appreciate that the course is designed to widen the reach of deep learning, but for those perhaps either more mathematically inclined or just extra curious, I highly recommend Lazy Programmer's Data Science: Deep Learning in Python class on Udemy for only $10. Gives a little more mathematical rigor...and hey extra practice in coding up a basic NN all in one script doesn't hurt. Thumbs up Ng!

por Vivek R

•24 de ago. de 2017

Excellent course for beginners who are ready to put in extra effort to understand the material. By extra effort I mean repeatedly viewing the lecture videos and persisting with the programming assignment until the techniques are clear. That said, I am personally slightly disappointed with this course. Having completed Andrew Ng's original 2012 Machine learning course, I don't think there is anything new here for users like me. However it served as a good refresher. The other complaint I have is that the programming assignments are too simple. It's basically paint by numbers. If you really want to understand the material, you should write the programs from scratch and use any of the data sets available on the internet.

por Abhimanyu A

•3 de mar. de 2018

What a marvellous roller coster ride it was! Thank you so much Andrew Sir and the entire team for putting up these efforts to provide such high quality material accessible to everyone! Cheers to all of you! I wish one day I would be able to share my knowledge like this! I wish!

One thing that I would like to add/suggest that, please provide some reference links, book recommendations and other useful information in the end of the program for anyone who wants to do some more research on the roots of the algorithms. Doing this, it will continue the learning path for the student and would keep the fire burning in him/her.

Please let me know if you have any questions regarding this review.

Thank you once again. :)

You rock!

por José A V M

•26 de sep. de 2017

Amazing!! I've took part of the Udacity Deep Learning Nanodegree, but the math there was just not enough to my taste, here the thing is different, I love all the notation and the math behind. Also there are more focus in build the model step-by-step. As recommendation, I would like to include an activity to sketch the functions of the deep learning layers. For example, if I would like to build from scratch a deep learning model, what will be the functions I will need (in the assignments I could deduce them, but I would have like to have an activity related to this). Also I would like to have a little more focus in visualizing a small neural network, and write the values from the matrix to the visual representation.

por Pradeep K P

•20 de nov. de 2017

Excellent course by Andrew and team. I am a big fan of andrew teaching style (since I took his ML course), no fancy screens just basic slides with great contents and explanation. My personal fav part in this course is programming assignment, this part is made very thoughtfully I think there are always some clue in the instructions and comments which one can pick to develop code to solve assignments.

For anyone planning to take this course I would suggest to refresh maths mainly topics like calculus, Linear algrbra, though Andrew explains required maths with a great ease. but still good to have maths background.

I am excited and looking forward to explore upcoming courses in deep learning series.

All the best!

por George G

•31 de may. de 2021

Machine Learning is quite demanding of Linear Algebra and Calculus but in this course, they won't be a hindrance as Andrew manages to deliver core concepts satisfactorily even without diving deep into the math behind. The course is designed to be approachable to the widest possible audience interested in Deep Learning. This results in programming exercises being pretty much "fill in the gaps" format which may come across as way too easy and they surely are. The key in my case was to try to implement the entire notebooks from scratch a week later and that's where the programming exercises shine. These are very well-crafted concise nuggets of code that shed light on abstract ideas excellently in a programming way.

por Paolo A

•12 de mar. de 2020

As Business Executive I was rather skeptic and a little worried starting this adventure "in deep" as I have not programmed for many years, but still have some notions of linear algebra for luck. My personal objective is to understand AI deep networks to propagate it inside my Firm and especially to improve quality of living, freedom, sustainability in society. I think I got the right direction!

I have been very impressed by Andrew's approach and style that make you comfortable learning these not simple matters. I wish I could have time to continue the Deep learning Specialization.

Thank you very much to Andrew , to the whole Faculty Team and to the brilliant colleagues attending this wonderful course.

Cheers:)

por Syed M I

•23 de ago. de 2019

Mr Andrew will make you climb the mountain while holding your hand.

There were sections in which I found the subject getting a better of me, but at the end of those videos he would come up and say "Don't worry if you didn't get full sense of what's going on" or "This is one of the hardest mathematical portion in machine learning" or "Even after all these years i am sometimes not confident of my approach but the model works magically".

In the confusing sections, he almost writes down the code for you to copy-paste. He had pre-written most of the codes for us, but make us feel that we are the ones writing it, because the ultimate aim is to learn things and be confident enough to replicate the learned skills later.

por Mukesh K

•22 de ene. de 2019

First of all, thanks for offering the course on the platform. Before starting the course I had a good knowledge of machine learning and have been thinking about exploring the field of Neural Networks and Deep Learning. I could not do it in my college but the course provided me the opportunity.

The course material is very concise. Professor Andrew Ng presented very complex concepts in very easy language. The Programming Assignments are very helpful. They test and enhance both your Python Programming Skills and python code Implementation skills. While doing the Programming Assignments I was not only learning the concepts but also enjoying them. The entire course as well as the assignments are very much engaging.

por Jia D

•19 de jun. de 2020

After taking this course, I have no doubt that Andrew is one of the best instructors in deep learning! He made you feel everyone could learn deep learning and do well. The quizzes examine your understanding of the concepts with many details, and the programming assignments are very well designed - one is built on the other with an increased level of difficulties. However, they never overwhelm you if you have the patience and believe you can master them eventually. The interviews with masters in machine learning also make this course even more exciting. Highly recommended to everyone who wants to start your journey in deep learning! Excited to start the next course in this specialization! Thank you, Coursera!

por NITIN B

•20 de ene. de 2021

This Course is very helpful, especially when you want to start from scratch, it gives the basic intuitions about what actually happens and how the Deep learning works. Personally, I had a bit of experience in deep learning which I kinda learnt on my own(a few basics of keras tensorflow) before starting this course but after going through the lectures and programming exercises included in this course now I have a clear picture about what really goes in and out in a neural network. Though in this course tensorflow isn't taught but hey it's totally worth it, after taking up this course now I know how parameters are really updated in a layer and how the data in a neural network actually flows through the layers.

por Prithvi B

•26 de jul. de 2020

Andrew, Take these comments as a token of my gratitude to you. From the perspective of clearing concepts, this is the best course on machine learning. I wish I would have done this course 10 year back. I have explained the concepts understood from this course to my 13 year old son and he now has an intuition of what machine learning is all about. Recently, lot of professionals have understood the concepts from your course and they all owe to you. Keep up the good work. I hope machine learning or technology proves to be helpful to human kind and governments of developing and underdeveloped countries also use them for better governance instead of being used by billionaires to get more rich. Thanks once again.

por Kevin

•6 de oct. de 2017

Andrew you did it again! This is the best intro theory and implementation course on Neural Networks out there. It combines enough theory (optional Calculus/Linear Algebra) and full implementation. The discussion groups are great for hints when you get stuck. Thank you to all the assistants and TA's who put in so much time to this course!

Now, for anyone who is debating taking this, having a calculus and linear algebra background will definitely help you in this course for the theory, but it's not a necessity at all. Some prior Python experience is needed as you will need to understand how functions are being called, but that wouldn't take a lot of time to get caught up on, but would require additional effort.

por Justin T

•11 de oct. de 2018

Fantastic course! As someone who has done several online tutorials that use frameworks like TensorFlow or Keras, even having implemented things like deep reinforcement learning agents and image classifiers with these frameworks, I've never really gone through any formal training on much of the lower-level concepts/mathematics of deep networks. But this course cemented a lot of the fundamentals about deep learning into my brain that I was missing before, organizing topics in a clear and concise sequence of videos/lessons that really helped me keep things organized in my own head. Doing the exercises in a "manual", framework-less way using just standard Numpy was an awesome and enlightening experience too!

por Balachandran S

•16 de oct. de 2017

One of the best Deep Learning courses (probably 'THE' best) around. Been a fan of Andrew Ng's sessions after I took his Machine Learning course in Coursera.

The course is perfectly designed such that its complexity increases gradually every week. The instructor makes sure that the participants follow completely.

Some points about the course -

1) Assignments are made too easy (too much hand-holding). But maybe the others who are new to programming might appreciate it better.

2) Andrew laboriously reiterated the points that required understanding.

Sometimes, I felt the course topic to be highly repeatative but later after completing the assignments, I felt it was required to be so and it was totally worth it!

- Analista de datos de Google
- Gestión de proyectos de Google
- Diseño de experiencia del usuario (UX) de Google
- Soporte de TI de Google
- Ciencia de datos de IBM
- Analista en datos de IBM
- Análisis de datos de IBM con Excel y R
- Analista de ciberseguridad de IBM
- Marketing en redes sociales: Facebook
- Desarrollador de la nube de pila completa de IBM
- Representante de desarrollo de ventas de Salesforce
- Operaciones de venta de Salesforce
- Soporte de Tecnologías de la Información de Google
- Certificado profesional de Suporte em TI do Google
- Automatización de TI de Google con Python
- DeepLearning.AI Tensorflow
- Certificaciones populares en Seguridad Cibernética
- Certificaciones populares en SQL
- Certificaciones populares en TI
- Ver todos los certificados

- cursos gratuitos
- Aprende un idioma
- python
- Java
- diseño web
- SQL
- Cursos gratis
- Microsoft Excel
- Administración de proyectos
- seguridad cibernética
- Recursos Humanos
- Cursos gratis en Ciencia de los Datos
- hablar inglés
- Redacción de contenidos
- Desarrollo web de pila completa
- Inteligencia artificial
- Programación C
- Aptitudes de comunicación
- Cadena de bloques
- Ver todos los cursos

- Habilidades para equipos de ciencia de datos
- Toma de decisiones basada en datos
- Habilidades de ingeniería de software
- Habilidades sociales para equipos de ingeniería
- Habilidades para administración
- Habilidades en marketing
- Habilidades para equipos de ventas
- Habilidades para gerentes de productos
- Habilidades para finanzas
- Proyectos de desarrollo de Android
- Proyectos de TensorFlow y Keras
- Python para todos
- Aprendizaje profundo
- Habilidades de Excel aplicadas para los negocios
- Aspectos básicos de los negocios
- Aprendizaje Automático
- Aspectos básicos de AWS
- Bases de la Ingeniería de Datos
- Habilidades como analista de datos
- Habilidades para diseñadores de experiencia del usuario

- MasterTrack® Certificates
- Certificados profesionales
- Certificados universitarios
- MBA y títulos de grado en negocios
- Títulos en ciencias de los datos
- Títulos en ciencias informáticas
- Títulos en Análisis de datos
- Títulos en salud pública
- Títulos de grado en Ciencias Sociales
- Títulos en administración
- Títulos de grado de las principales universidades europeas
- Maestrías
- Licenciaturas
- Títulos de grado con trayectoria de desempeño
- Cursos BSc
- ¿Qué es una licenciatura?
- ¿Cuánto tiempo dura una Maestría?
- ¿Vale la pena hacer una MBA en línea?
- Siete maneras de pagar la escuela de posgrado
- Ver todos los títulos