Acerca de este Curso
1,757,027 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 18 horas para completar

Inglés (English)

Subtítulos: Chino (tradicional), Árabe (Arabic), Francés (French), Ucraniano, Chino (simplificado), Portugués (de Brasil), Coreano, Turco (Turkish), Inglés (English), Español (Spanish), Japonés...

Habilidades que obtendrás

Artificial Neural NetworkBackpropagationPython ProgrammingDeep Learning

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 18 horas para completar

Inglés (English)

Subtítulos: Chino (tradicional), Árabe (Arabic), Francés (French), Ucraniano, Chino (simplificado), Portugués (de Brasil), Coreano, Turco (Turkish), Inglés (English), Español (Spanish), Japonés...

Programa - Qué aprenderás en este curso

Semana
1
2 horas para completar

Introduction to deep learning

7 videos (Total 76 minutos), 2 readings, 1 quiz
7 videos
Why is Deep Learning taking off?10m
About this Course2m
Course Resources1m
Geoffrey Hinton interview40m
2 lecturas
Frequently Asked Questions10m
How to use Discussion Forums10m
1 ejercicio de práctica
Introduction to deep learning20m
Semana
2
7 horas para completar

Neural Networks Basics

19 videos (Total 161 minutos), 4 readings, 3 quizzes
19 videos
Gradient Descent11m
Derivatives7m
More Derivative Examples10m
Computation graph3m
Derivatives with a Computation Graph14m
Logistic Regression Gradient Descent6m
Gradient Descent on m Examples8m
Vectorization8m
More Vectorization Examples6m
Vectorizing Logistic Regression7m
Vectorizing Logistic Regression's Gradient Output9m
Broadcasting in Python11m
A note on python/numpy vectors6m
Quick tour of Jupyter/iPython Notebooks3m
Explanation of logistic regression cost function (optional)7m
Pieter Abbeel interview16m
4 lecturas
Clarification about Upcoming Logistic Regression Cost Function Video1m
Clarification about Upcoming Gradient Descent Video1m
Deep Learning Honor Code2m
Programming Assignment FAQ10m
1 ejercicio de práctica
Neural Network Basics20m
Semana
3
5 horas para completar

Shallow neural networks

12 videos (Total 109 minutos), 2 readings, 2 quizzes
12 videos
Vectorizing across multiple examples9m
Explanation for Vectorized Implementation7m
Activation functions10m
Why do you need non-linear activation functions?5m
Derivatives of activation functions7m
Gradient descent for Neural Networks9m
Backpropagation intuition (optional)15m
Random Initialization7m
Ian Goodfellow interview14m
2 lecturas
Clarification about Activation Function1m
Clarification about Upcoming Backpropagation intuition (optional)1m
1 ejercicio de práctica
Shallow Neural Networks20m
Semana
4
5 horas para completar

Deep Neural Networks

8 videos (Total 64 minutos), 3 readings, 3 quizzes
8 videos
Why deep representations?10m
Building blocks of deep neural networks8m
Forward and Backward Propagation10m
Parameters vs Hyperparameters7m
What does this have to do with the brain?3m
3 lecturas
Clarification about Getting your matrix dimensions right video1m
Clarification about Upcoming Forward and Backward Propagation Video1m
Clarification about What does this have to do with the brain video1m
1 ejercicio de práctica
Key concepts on Deep Neural Networks20m
4.9
11167 revisionesChevron Right

39%

comenzó una nueva carrera después de completar estos cursos

37%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

11%

consiguió un aumento de sueldo o ascenso

Principales revisiones sobre Redes neurales y aprendizaje profundo

por MZSep 13th 2018

This course is really great.The lectures are really easy to understand and grasp.The assignment instructions are really helpful and one does not need to know python before hand to complete the course.

por SSNov 27th 2017

Fantastic introduction to deep NNs starting from the shallow case of logistic regression and generalizing across multiple layers. The material is very well structured and Dr. Ng is an amazing teacher.

Instructores

Avatar

Andrew Ng

CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain
Avatar

Head Teaching Assistant - Kian Katanforoosh

Lecturer of Computer Science at Stanford University, deeplearning.ai, Ecole CentraleSupelec
Avatar

Teaching Assistant - Younes Bensouda Mourri

Mathematical & Computational Sciences, Stanford University, deeplearning.ai
Computer Science

Acerca de deeplearning.ai

deeplearning.ai is Andrew Ng's new venture which amongst others, strives for providing comprehensive AI education beyond borders....

Acerca de Programa especializado Aprendizaje profundo

If you want to break into AI, this Specialization will help you do so. Deep Learning is one of the most highly sought after skills in tech. We will help you become good at Deep Learning. In five courses, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach. You will also hear from many top leaders in Deep Learning, who will share with you their personal stories and give you career advice. AI is transforming multiple industries. After finishing this specialization, you will likely find creative ways to apply it to your work. We will help you master Deep Learning, understand how to apply it, and build a career in AI....
Aprendizaje profundo

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.