Acerca de este Curso
620,158 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 18 horas para completar

Sugerido: 11 hours/week...

Inglés (English)

Subtítulos: Chino (tradicional), Chino (simplificado), Coreano, Inglés (English), Español (Spanish)

Habilidades que obtendrás

Recurrent Neural NetworkArtificial Neural NetworkDeep LearningLong Short-Term Memory (ISTM)

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 18 horas para completar

Sugerido: 11 hours/week...

Inglés (English)

Subtítulos: Chino (tradicional), Chino (simplificado), Coreano, Inglés (English), Español (Spanish)

Programa - Qué aprenderás en este curso

Semana
1
6 horas para completar

Recurrent Neural Networks

12 videos (Total 112 minutos), 2 lecturas, 4 cuestionarios
12 videos
Notation9m
Recurrent Neural Network Model16m
Backpropagation through time6m
Different types of RNNs9m
Language model and sequence generation12m
Sampling novel sequences8m
Vanishing gradients with RNNs6m
Gated Recurrent Unit (GRU)17m
Long Short Term Memory (LSTM)9m
Bidirectional RNN8m
Deep RNNs5m
2 lecturas
Gated Recurrent Unit (GRU) *CORRECTION*1m
Long Short Term Memory (LSTM) *CORRECTION*1m
1 ejercicio de práctica
Recurrent Neural Networks20m
Semana
2
4 horas para completar

Natural Language Processing & Word Embeddings

10 videos (Total 102 minutos), 1 lectura, 3 cuestionarios
10 videos
Using word embeddings9m
Properties of word embeddings11m
Embedding matrix5m
Learning word embeddings10m
Word2Vec12m
Negative Sampling11m
GloVe word vectors11m
Sentiment Classification7m
Debiasing word embeddings11m
1 lectura
GloVe word vectors *CORRECTION*1m
1 ejercicio de práctica
Natural Language Processing & Word Embeddings20m
Semana
3
5 horas para completar

Sequence models & Attention mechanism

11 videos (Total 103 minutos), 2 lecturas, 3 cuestionarios
11 videos
Picking the most likely sentence8m
Beam Search11m
Refinements to Beam Search11m
Error analysis in beam search9m
Bleu Score (optional)16m
Attention Model Intuition9m
Attention Model12m
Speech recognition8m
Trigger Word Detection5m
Conclusion and thank you2m
2 lecturas
Bleu Score *CORRECTION*1m
Instructions if you are unable to open your notebook10m
1 ejercicio de práctica
Sequence models & Attention mechanism20m
4.8
1934 revisionesChevron Right

39%

comenzó una nueva carrera después de completar estos cursos

40%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

13%

consiguió un aumento de sueldo o ascenso

Principales revisiones sobre Sequence Models

por JYOct 30th 2018

The lectures covers lots of SOTA deep learning algorithms and the lectures are well-designed and easy to understand. The programming assignment is really good to enhance the understanding of lectures.

por AMJul 1st 2019

The course is very good and has taught me the all the important concepts required to build a sequence model. The assignments are also very neatly and precisely designed for the real world application.

Instructores

Avatar

Andrew Ng

CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain
Avatar

Head Teaching Assistant - Kian Katanforoosh

Lecturer of Computer Science at Stanford University, deeplearning.ai, Ecole CentraleSupelec
Avatar

Teaching Assistant - Younes Bensouda Mourri

Mathematical & Computational Sciences, Stanford University, deeplearning.ai
Computer Science

Acerca de deeplearning.ai

deeplearning.ai is Andrew Ng's new venture which amongst others, strives for providing comprehensive AI education beyond borders....

Acerca de Programa especializado Aprendizaje profundo

If you want to break into AI, this Specialization will help you do so. Deep Learning is one of the most highly sought after skills in tech. We will help you become good at Deep Learning. In five courses, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach. You will also hear from many top leaders in Deep Learning, who will share with you their personal stories and give you career advice. AI is transforming multiple industries. After finishing this specialization, you will likely find creative ways to apply it to your work. We will help you master Deep Learning, understand how to apply it, and build a career in AI....
Aprendizaje profundo

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.