Chevron Left
Volver a Mathematics for Machine Learning: PCA

Opiniones y comentarios de aprendices correspondientes a Mathematics for Machine Learning: PCA por parte de Imperial College London

2,843 calificaciones

Acerca del Curso

This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction. At the end of this course, you'll be familiar with important mathematical concepts and you can implement PCA all by yourself. If you’re struggling, you'll find a set of jupyter notebooks that will allow you to explore properties of the techniques and walk you through what you need to do to get on track. If you are already an expert, this course may refresh some of your knowledge. The lectures, examples and exercises require: 1. Some ability of abstract thinking 2. Good background in linear algebra (e.g., matrix and vector algebra, linear independence, basis) 3. Basic background in multivariate calculus (e.g., partial derivatives, basic optimization) 4. Basic knowledge in python programming and numpy Disclaimer: This course is substantially more abstract and requires more programming than the other two courses of the specialization. However, this type of abstract thinking, algebraic manipulation and programming is necessary if you want to understand and develop machine learning algorithms....

Principales reseñas


6 de jul. de 2021

Now i feel confident about pursuing machine learning courses in the future as I have learned most of the mathematics which will be helpful in building the base for machine learning, data science.


16 de jul. de 2018

This is one hell of an inspiring course that demystified the difficult concepts and math behind PCA. Excellent instructors in imparting the these knowledge with easy-to-understand illustrations.

Filtrar por:

301 - 325 de 708 revisiones para Mathematics for Machine Learning: PCA

por Jonah L

6 de dic. de 2020

por Gautham T

16 de jun. de 2019

por Ankur A

15 de may. de 2020

por Imran S

19 de dic. de 2018

por Ajay S

20 de feb. de 2021

por Felix G S S

27 de mar. de 2021

por Ricardo C V

25 de dic. de 2019


17 de jul. de 2020

por Mayank K

2 de jul. de 2020

por Nihal T

13 de jul. de 2022

por Michael

3 de ago. de 2021

por Subhodip P

15 de dic. de 2020

por Pranav N

25 de ago. de 2020

por iorilu

3 de jun. de 2021

por Gazi J H

16 de oct. de 2020

por Yasser Z S E

26 de may. de 2020

por wonseok k

3 de mar. de 2020

por 福永圭佑

15 de sep. de 2019

por Rajkumar R

20 de jun. de 2020

por Jason K

24 de jul. de 2021

por Omar Y B L

15 de jul. de 2020

por N'guessan L R G

14 de abr. de 2020

por Dominik B

17 de feb. de 2020

por Sujeet B

21 de jul. de 2019

por Jitender S V

25 de jul. de 2018