Chevron Left
Volver a Mathematics for Machine Learning: PCA

Opiniones y comentarios de aprendices correspondientes a Mathematics for Machine Learning: PCA por parte de Imperial College London

4.0
estrellas
2,866 calificaciones

Acerca del Curso

This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction. At the end of this course, you'll be familiar with important mathematical concepts and you can implement PCA all by yourself. If you’re struggling, you'll find a set of jupyter notebooks that will allow you to explore properties of the techniques and walk you through what you need to do to get on track. If you are already an expert, this course may refresh some of your knowledge. The lectures, examples and exercises require: 1. Some ability of abstract thinking 2. Good background in linear algebra (e.g., matrix and vector algebra, linear independence, basis) 3. Basic background in multivariate calculus (e.g., partial derivatives, basic optimization) 4. Basic knowledge in python programming and numpy Disclaimer: This course is substantially more abstract and requires more programming than the other two courses of the specialization. However, this type of abstract thinking, algebraic manipulation and programming is necessary if you want to understand and develop machine learning algorithms....

Principales reseñas

WS

6 de jul. de 2021

Now i feel confident about pursuing machine learning courses in the future as I have learned most of the mathematics which will be helpful in building the base for machine learning, data science.

JS

16 de jul. de 2018

This is one hell of an inspiring course that demystified the difficult concepts and math behind PCA. Excellent instructors in imparting the these knowledge with easy-to-understand illustrations.

Filtrar por:

26 - 50 de 711 revisiones para Mathematics for Machine Learning: PCA

por Tobias L

10 de sep. de 2020

por Tony J

2 de oct. de 2020

por Sanjay k

14 de ago. de 2018

por Luis M V F

20 de mar. de 2019

por Sergii T

22 de dic. de 2018

por Jian L

23 de oct. de 2020

por Mikhail D

27 de may. de 2020

por Kathleen D

10 de dic. de 2020

por Akiva K S

13 de jun. de 2020

por Amar D N

30 de may. de 2020

por Paul

5 de ago. de 2020

por Rachel S

9 de jul. de 2019

por James P

10 de jun. de 2018

por Gabriel W

23 de may. de 2020

por Nathan R

22 de ene. de 2020

por Naveen K

9 de ago. de 2018

por Matt C

1 de jul. de 2018

por Ong J R

11 de ago. de 2018

por Mojtaba B

1 de abr. de 2021

por Steve

5 de sep. de 2020

por Kannan S

11 de abr. de 2018

por Valeria B

26 de jun. de 2019

por Yaroshchuk A

22 de may. de 2020

por John Z

13 de oct. de 2019

por Rob E

11 de ago. de 2020