Volver a Mathematics for Machine Learning: PCA

## Opiniones y comentarios de aprendices correspondientes a Mathematics for Machine Learning: PCA por parte de Imperial College London

4.0
estrellas
2,867 calificaciones

## Acerca del Curso

This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction. At the end of this course, you'll be familiar with important mathematical concepts and you can implement PCA all by yourself. If youâ€™re struggling, you'll find a set of jupyter notebooks that will allow you to explore properties of the techniques and walk you through what you need to do to get on track. If you are already an expert, this course may refresh some of your knowledge. The lectures, examples and exercises require: 1. Some ability of abstract thinking 2. Good background in linear algebra (e.g., matrix and vector algebra, linear independence, basis) 3. Basic background in multivariate calculus (e.g., partial derivatives, basic optimization) 4. Basic knowledge in python programming and numpy Disclaimer: This course is substantially more abstract and requires more programming than the other two courses of the specialization. However, this type of abstract thinking, algebraic manipulation and programming is necessary if you want to understand and develop machine learning algorithms....

## Principales reseÃ±as

WS

6 de jul. de 2021

Now i feel confident about pursuing machine learning courses in the future as I have learned most of the mathematics which will be helpful in building the base for machine learning, data science.

JS

16 de jul. de 2018

This is one hell of an inspiring course that demystified the difficult concepts and math behind PCA. Excellent instructors in imparting the these knowledge with easy-to-understand illustrations.

Filtrar por:

## 476 - 500 de 712 revisiones para Mathematics for Machine Learning: PCA

por taeha k

â€¢

27 de jul. de 2019

por Eddery L

â€¢

24 de may. de 2019

por Manish C

â€¢

6 de may. de 2020

por Thijs S

â€¢

28 de sep. de 2020

por andre w

â€¢

27 de mar. de 2022

por J N B P

â€¢

10 de sep. de 2020

por Romesh M P

â€¢

16 de ene. de 2020

por 3047 T

â€¢

13 de jul. de 2020

por Kailash Y

â€¢

9 de jul. de 2020

por Muhammad F T S

â€¢

28 de mar. de 2021

por Mark R

â€¢

22 de ene. de 2019

por Changson O

â€¢

28 de ene. de 2019

por Poomphob S

â€¢

18 de jun. de 2020

por Sammy R

â€¢

25 de dic. de 2019

por Shreyas S S

â€¢

20 de jun. de 2020

por NITESH J

â€¢

28 de ago. de 2020

por Egi R T

â€¢

14 de jul. de 2022

por Raihan N J M

â€¢

12 de mar. de 2021

por Harrison B

â€¢

18 de abr. de 2020

por Mark P

â€¢

29 de jul. de 2019

por Quek J H

â€¢

29 de oct. de 2022

por Keith C

â€¢

8 de ago. de 2021

por Yuchi C

â€¢

23 de feb. de 2020

por Leandro C F

â€¢

1 de abr. de 2021

por Philippe R

â€¢

16 de may. de 2018