Volver a Mathematics for Machine Learning: PCA

## Opiniones y comentarios de aprendices correspondientes a Mathematics for Machine Learning: PCA por parte de Imperial College London

4.0
estrellas
2,867 calificaciones

## Acerca del Curso

This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction. At the end of this course, you'll be familiar with important mathematical concepts and you can implement PCA all by yourself. If youâ€™re struggling, you'll find a set of jupyter notebooks that will allow you to explore properties of the techniques and walk you through what you need to do to get on track. If you are already an expert, this course may refresh some of your knowledge. The lectures, examples and exercises require: 1. Some ability of abstract thinking 2. Good background in linear algebra (e.g., matrix and vector algebra, linear independence, basis) 3. Basic background in multivariate calculus (e.g., partial derivatives, basic optimization) 4. Basic knowledge in python programming and numpy Disclaimer: This course is substantially more abstract and requires more programming than the other two courses of the specialization. However, this type of abstract thinking, algebraic manipulation and programming is necessary if you want to understand and develop machine learning algorithms....

## Principales reseÃ±as

WS

6 de jul. de 2021

Now i feel confident about pursuing machine learning courses in the future as I have learned most of the mathematics which will be helpful in building the base for machine learning, data science.

JS

16 de jul. de 2018

This is one hell of an inspiring course that demystified the difficult concepts and math behind PCA. Excellent instructors in imparting the these knowledge with easy-to-understand illustrations.

Filtrar por:

## 501 - 525 de 712 revisiones para Mathematics for Machine Learning: PCA

por P G

â€¢

23 de abr. de 2018

por Keshav B

â€¢

22 de ago. de 2020

por Nguyen N D

â€¢

14 de jul. de 2020

por Giann D

â€¢

7 de abr. de 2021

por Michael P G

â€¢

21 de may. de 2020

por Trevor F K

â€¢

3 de ene. de 2021

por Sanjay K A

â€¢

23 de jun. de 2021

por Ben H

â€¢

20 de ago. de 2019

por Chris

â€¢

13 de abr. de 2020

por Dan M

â€¢

4 de jun. de 2020

por Helena R

â€¢

15 de feb. de 2022

por Vishvapalsinhji

â€¢

8 de feb. de 2021

por Nont N

â€¢

25 de sep. de 2019

por Vagif A

â€¢

9 de feb. de 2021

por Lisa F

â€¢

6 de jul. de 2020

por Guerville J

â€¢

15 de abr. de 2020

por Rene R

â€¢

18 de jul. de 2020

por Weijie D

â€¢

23 de nov. de 2019

por Loc N

â€¢

14 de ene. de 2020

por Nigel H

â€¢

18 de abr. de 2018

por Rhea G

â€¢

27 de jun. de 2020

por Chi W

â€¢

19 de may. de 2018

por Prashant D

â€¢

16 de feb. de 2019

por Francesc B

â€¢

2 de jun. de 2018

por Omoloro O

â€¢

7 de ago. de 2019