Chevron Left
Volver a Mathematics for Machine Learning: PCA

Opiniones y comentarios de aprendices correspondientes a Mathematics for Machine Learning: PCA por parte de Imperial College London

4.0
estrellas
2,841 calificaciones

Acerca del Curso

This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction. At the end of this course, you'll be familiar with important mathematical concepts and you can implement PCA all by yourself. If you’re struggling, you'll find a set of jupyter notebooks that will allow you to explore properties of the techniques and walk you through what you need to do to get on track. If you are already an expert, this course may refresh some of your knowledge. The lectures, examples and exercises require: 1. Some ability of abstract thinking 2. Good background in linear algebra (e.g., matrix and vector algebra, linear independence, basis) 3. Basic background in multivariate calculus (e.g., partial derivatives, basic optimization) 4. Basic knowledge in python programming and numpy Disclaimer: This course is substantially more abstract and requires more programming than the other two courses of the specialization. However, this type of abstract thinking, algebraic manipulation and programming is necessary if you want to understand and develop machine learning algorithms....

Principales reseñas

WS

6 de jul. de 2021

Now i feel confident about pursuing machine learning courses in the future as I have learned most of the mathematics which will be helpful in building the base for machine learning, data science.

JS

16 de jul. de 2018

This is one hell of an inspiring course that demystified the difficult concepts and math behind PCA. Excellent instructors in imparting the these knowledge with easy-to-understand illustrations.

Filtrar por:

101 - 125 de 707 revisiones para Mathematics for Machine Learning: PCA

por Alistair K

16 de may. de 2020

por Nuria C

3 de nov. de 2020

por Aniket D B

2 de oct. de 2020

por Pavel S

12 de dic. de 2019

por Indira P

26 de mar. de 2021

por Raghav G

13 de jul. de 2020

por Deleted A

31 de jul. de 2019

por Galina F

8 de ene. de 2020

por Cy L

9 de jun. de 2018

por Shubhayu D

13 de jun. de 2020

por Abhishek S

7 de jun. de 2020

por Nathaniel F

14 de mar. de 2021

por Gita A S

12 de mar. de 2021

por Anton K

14 de nov. de 2020

por Marco v Z

19 de jul. de 2020

por Ivy W

3 de abr. de 2021

por Fredrick A

20 de feb. de 2020

por Abdu M

20 de ene. de 2019

por ANAMITRA S

4 de sep. de 2020

por Laszlo C

6 de dic. de 2019

por Mohit

28 de dic. de 2020

por Douglas W

22 de may. de 2020

por Muhammad Y A

5 de nov. de 2020

por Jitesh J T

23 de dic. de 2019

por Taranpreet s

26 de sep. de 2020