Volver a Mathematics for Machine Learning: PCA

estrellas

2,810 calificaciones

•

698 reseña

This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction.
At the end of this course, you'll be familiar with important mathematical concepts and you can implement PCA all by yourself. If you’re struggling, you'll find a set of jupyter notebooks that will allow you to explore properties of the techniques and walk you through what you need to do to get on track. If you are already an expert, this course may refresh some of your knowledge.
The lectures, examples and exercises require:
1. Some ability of abstract thinking
2. Good background in linear algebra (e.g., matrix and vector algebra, linear independence, basis)
3. Basic background in multivariate calculus (e.g., partial derivatives, basic optimization)
4. Basic knowledge in python programming and numpy
Disclaimer: This course is substantially more abstract and requires more programming than the other two courses of the specialization. However, this type of abstract thinking, algebraic manipulation and programming is necessary if you want to understand and develop machine learning algorithms....

WS

6 de jul. de 2021

Now i feel confident about pursuing machine learning courses in the future as I have learned most of the mathematics which will be helpful in building the base for machine learning, data science.

JS

16 de jul. de 2018

This is one hell of an inspiring course that demystified the difficult concepts and math behind PCA. Excellent instructors in imparting the these knowledge with easy-to-understand illustrations.

Filtrar por:

por 용석 권

•29 de ene. de 2019

Programming assignments' quality is too bad to follow it. Their lecture's explanation and assignments' notation are not matched. Moreover, the code is sometimes ridiculous.

por Benjamin F

•18 de nov. de 2019

The didactic value of this course is rather low. The lectures do not explain the very concepts required to sovle the subsequent assigments, or do it in a very poor way.

por Kareem T M

•18 de may. de 2020

Worst Course I have ever token on Coursera, the instructor hadn't mention any examples or simplify the information.

por HARSHIT J

•11 de jun. de 2020

Very tough course, the first 3 weeks are good, but the last week is as poorly explained as one can imagine

por Kapeesh V

•17 de abr. de 2021

Week 4 Assignment is not constructed properly.

por Tathagat A

•15 de jun. de 2020

The lecturer was not always understandable.

por Michael-John B

•16 de may. de 2020

If I could give it negative stars I would.

por Mohamed S

•1 de jun. de 2020

topics are poorly explained and confusing

por Heinz D

•21 de nov. de 2020

Good and motivating lecturer with decent language, thank you! Challenging course but the relief at the end is great. I'd prefer if the lecturer wouldn't write his texts to the very border of the board because if I'm taking screenshots in PiP mode, the window's controls (close window, play, return to normal video mode) are overlapping.

Week 1: Pre-course survey contains the questions of rather a post-course survey. The lab / programming assignment contains misleading code segments and incomplete explanations.

Week 2: Quiz 'General inner products', dealing with 3-dimensional inner products is very challenging as the lecture only went - in an extreme hurry - through 2-dimensional examples.

Week 3: Programming Assignment contains misleading code segments / comments (e.g. contradiction concerning return variable in project_1d()).

Week 4: Video 'Problem setting and PCA objective' -> Download Link to the PCA book chapter goes to Nirvana.

por Israel J L

•6 de ene. de 2019

Great course !! Definitely it's an intermediate course so if you don't have a college level in lineal algebra and calculus you'll struggle with the videos and the notebooks (besides you need basic level programing in python and numpy)

The videos are kinda hard but it seems that Marc it's a great mathematician and also he shares a great e-book written by him that has everything seen in the course and more, so with this you can get all the knowledge need it to understand PCA.

I don't understand why it's only 4 stars rated; again if you want to learn linear algebra and calculus, this is not the place... you need to have the needed level to suceed.

por Tze C L

•15 de abr. de 2021

This third and final course in the Mathematics for Machine Learning specialization is the most challenging of them all. This course focuses on deriving the PCA algorithm from scratch. As such, this course introduces you to more abstract topics of Linear Algebra that is not covered by the earlier courses in this specialization.

To follow along in this course, you need the accompanying text book "Mathematics for Machine Learning" written by the instructor himself. This text book is free to download in PDF format (website given in the course). This text book alone is worth the 5 stars, IMHO.

por Frank N

•31 de mar. de 2021

This is a great course. However, the prerequisites for this course should be more specific. It gets frustrating to realise that you cannot answer a question because you lack certain background knowledge.

In general, it is a great course. You would finish this course with a sense of fulfillment after completing all those challenging assignments. Thank you for this priceless knowledge!

por Wasim S

•7 de jul. de 2021

Now i feel confident about pursuing machine learning courses in the future as I have learned most of the mathematics which will be helpful in building the base for machine learning, data science.

por Veeramani. S

•6 de sep. de 2020

Good Explanation. Very helpful for learning an application of mathematics through this course

por Deleted A

•5 de jul. de 2020

I'd like to say thanks to everyone who has made this learning experience possible.

Thank you, Marc. Your explanations combined with the book "Mathematics for Machine Learning" have come really handy.

It has been an amazing journey to see how linear algebra marries multivariate calculus to give birth to to PCA.

Being a linguist, I must admit I'm quite new to Python and the domain of machine learning. It would be great if you could add some polishing touches to the programming assignments, especially the one in Week 4 (PCA): waiting for a long time until the system finishes crunching the code was quite a slow experience. If that has to do with a student's sloppy code, please add some recommendations inside the assignment on how to avoid this trap. If that is caused by some technical issues on the server side, please take a moment to look at this.

That you have added the Python tutorial is really helpful. Could you also consider updating it with some details on how to sort eigenvectors and eigenvalues to collect these into a covariance matrix. This piece was mighty tough.

Thank you once again. Keep on!

por Henry N

•27 de ago. de 2020

Overall this was a pretty good course - some other reviews comment on how some things are glossed over in the videos but you'll get the most out of it if the other courses in the specialisation are fresh in your mind (e.g. you'll have to know about eigenvectors/eigenvalues, Gaussian elimination, derivatives and the chain rule etc. as these are referred to and used but not explained in detail - but these are covered in the first 2 courses). The main problem is with the assignments - for some weeks there's not enough guidance about what the functions should be returning, so these should be better documented; the other issue is that some of the code that we are not required to edit doesn't actually work - for instance, my implementation of PCA passed the grader but the visualisations in the week 4 notebook didn't work.

por Andrea V

•22 de jun. de 2019

This course is hard, and contains a lot of mathematical derivations and concepts that might be overwhelming for somebody not completely fresh in maths. Nevertheless, it offers a good balance between rigour and practical application, and if some lectures turn out to be too complicated, there's always the chance to deepen the matter more quitely using the course material or online resources. I think that the course would have benefited from a more aneddoctical approach at times: for instance restating in english what the general purpose of PCA is, could help the less mathematically inclined to better seize the idea. But I know this is not always easy to do.

por Arka S

•27 de may. de 2020

Frankly, after the high of the first two courses of this specialisation, this one was a low. Instruction was typical of most Universities; heavily analytical and monotonous. This was not a proper way, especially for such a complicated (for beginners) topic like PCA. This course could've been executed in a much better way.

Still a lot of insight is there to be gained, and I learnt quite a few things. The simplification of the cost (or loss) function was explained well, and I had quite a few 'Aha!' moments in this course as well (in Weeks 3 and 4), albeit not as much as I did in the first two courses (Lin Alg and Multivariate Calc).

por Ruarob T

•30 de jun. de 2019

Make sure you have time and be ready for python code debug. If you are just an average programmer with limited python exposure like me. It will take you a day to complete the programming assignment.

Note: the assignment and class VDO seems a distant - google a lot during the assignment/quiz

Note: Programming has little clue - personally, I think I spend so much time on programming (distracting me away from going back to Math review)

por Stanislav B

•6 de may. de 2021

Rather difficult course and will probably reqire to watch additional video-explanations on YouTube as well as studing math notation, etc. Otherwise, helpfull and comprehensive.

por Berkay E

•9 de ago. de 2019

-Some of the contents are not clear.

+It gets great intuition for new learners in machine learning.

por sairavikanth t

•29 de abr. de 2018

Lot of Math. Couldn't get proper intuition regarding PCA, was lost in understanding math equations

por Jessica P

•6 de ago. de 2019

I agree with the others. Course didn't merge well with the 1st two which were perfect!

por Clara M L

•1 de may. de 2018

Not as good as the other two courses but still very intuitive

por Shilin G

•27 de jun. de 2019

Not as good as previous two courses. I understand it is an intermediate course, but still, the video does not help you do the quiz, e.g. the video uses 2x2 matrices for example while quiz is mainly about 3x3 - then why not include a 3x3 example? Programming assignment is not clear either, some places you have to change the shape of matrix but it is not explained why this is necessary (and actually it is not). A lot of room for improvement here.

- Analista de datos de Google
- Gestión de proyectos de Google
- Diseño de experiencia del usuario (UX) de Google
- Soporte de TI de Google
- Ciencia de datos de IBM
- Analista en datos de IBM
- Análisis de datos de IBM con Excel y R
- Analista de ciberseguridad de IBM
- Ingeniería de Datos de IBM
- Desarrollador de la nube de pila completa de IBM
- Marketing en redes sociales: Facebook
- Analítica del marketing de Facebook
- Representante de desarrollo de ventas de Salesforce
- Operaciones de venta de Salesforce
- Contabilidad en Intuit
- Prepárate para una certificación en Google Cloud: arquitecto de la nube
- Prepárate para una certificación en Google Cloud: ingeniero de datos de la nube
- Lanza tu carrera profesional
- Prepárate para una certificación
- Avanza en tu carrera

- cursos gratuitos
- Aprende un idioma
- python
- Java
- diseño web
- SQL
- Cursos gratis
- Microsoft Excel
- Administración de proyectos
- seguridad cibernética
- Recursos Humanos
- Cursos gratis en Ciencia de los Datos
- hablar inglés
- Redacción de contenidos
- Desarrollo web de pila completa
- Inteligencia artificial
- Programación C
- Aptitudes de comunicación
- Cadena de bloques
- Ver todos los cursos

- Habilidades para equipos de ciencia de datos
- Toma de decisiones basada en datos
- Habilidades de ingeniería de software
- Habilidades sociales para equipos de ingeniería
- Habilidades para administración
- Habilidades en marketing
- Habilidades para equipos de ventas
- Habilidades para gerentes de productos
- Habilidades para finanzas
- Cursos populares de Ciencia de los Datos en el Reino Unido
- Beliebte Technologiekurse in Deutschland
- Certificaciones populares en Seguridad Cibernética
- Certificaciones populares en TI
- Certificaciones populares en SQL
- Guía profesional de gerente de Marketing
- Guía profesional de gerente de proyectos
- Habilidades en programación Python
- Guía profesional de desarrollador web
- Habilidades como analista de datos
- Habilidades para diseñadores de experiencia del usuario

- MasterTrack® Certificates
- Certificados profesionales
- Certificados universitarios
- MBA y títulos de grado en negocios
- Títulos de grado en ciencias de los datos
- Títulos en ciencias informáticas
- Títulos de grado en Análisis de datos
- Títulos de grado en salud pública
- Títulos de grado en Ciencias Sociales
- Títulos de grado en administración
- Títulos de grado de las principales universidades europeas
- Maestrías
- Licenciaturas
- Títulos de grado con trayectoria de desempeño
- Cursos BSc
- ¿Qué es una licenciatura?
- ¿Cuánto tiempo dura una Maestría?
- ¿Vale la pena hacer una MBA en línea?
- Siete maneras de pagar la escuela de posgrado
- Ver todos los certificados