Acerca de este Curso
64,299 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Aprox. 14 horas para completar

Inglés (English)

Subtítulos: Inglés (English)

Qué aprenderás

  • Check

    Describe machine learning methods such as regression or classification trees

  • Check

    Explain the complete process of building prediction functions

  • Check

    Understand concepts such as training and tests sets, overfitting, and error rates

  • Check

    Use the basic components of building and applying prediction functions

Habilidades que obtendrás

Random ForestMachine Learning (ML) AlgorithmsMachine LearningR Programming
Los estudiantes que toman este Course son
  • Risk Managers
  • Biostatisticians
  • Data Scientists
  • Data Analysts
  • Biologists

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Aprox. 14 horas para completar

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
2 horas para completar

Week 1: Prediction, Errors, and Cross Validation

9 videos (Total 73 minutos), 4 lecturas, 1 cuestionario
9 videos
What is prediction?8m
Relative importance of steps9m
In and out of sample errors6m
Prediction study design9m
Types of errors10m
Receiver Operating Characteristic5m
Cross validation8m
What data should you use?6m
4 lecturas
Welcome to Practical Machine Learning10m
A Note of Explanation2m
Syllabus10m
Pre-Course Survey10m
1 ejercicio de práctica
Quiz 110m
Semana
2
2 horas para completar

Week 2: The Caret Package

9 videos (Total 96 minutos), 1 cuestionario
9 videos
Data slicing5m
Training options7m
Plotting predictors10m
Basic preprocessing10m
Covariate creation17m
Preprocessing with principal components analysis14m
Predicting with Regression12m
Predicting with Regression Multiple Covariates11m
1 ejercicio de práctica
Quiz 210m
Semana
3
1 hora para completar

Week 3: Predicting with trees, Random Forests, & Model Based Predictions

5 videos (Total 48 minutos), 1 cuestionario
5 videos
Bagging9m
Random Forests6m
Boosting7m
Model Based Prediction11m
1 ejercicio de práctica
Quiz 310m
Semana
4
4 horas para completar

Week 4: Regularized Regression and Combining Predictors

4 videos (Total 33 minutos), 2 lecturas, 3 cuestionarios
4 videos
Combining predictors7m
Forecasting7m
Unsupervised Prediction4m
2 lecturas
Course Project Instructions (READ FIRST)10m
Post-Course Survey10m
2 ejercicios de práctica
Quiz 410m
Course Project Prediction Quiz40m
4.5
497 revisionesChevron Right

39%

comenzó una nueva carrera después de completar estos cursos

38%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

12%

consiguió un aumento de sueldo o ascenso

Principales revisiones sobre Practical Machine Learning

por ADMar 1st 2017

Issues of every stage of the construction of learning machine model, as well as issues with several different machine learning methods are well and in fine yet very understandable detail explained.

por ASAug 31st 2017

Highly recommend this course. It makes you read a lot, do lot's of practical exercises. The final project is a must do. After finishing this course you can start playing with kaggle data sets.

Instructores

Avatar

Jeff Leek, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Roger D. Peng, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Brian Caffo, PhD

Professor, Biostatistics
Bloomberg School of Public Health

Acerca de Universidad Johns Hopkins

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world....

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.