Acerca de este Curso
4.3
114 calificaciones
33 revisiones
Programa Especializado
100 % en línea

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.
Nivel avanzado

Nivel avanzado

Horas para completar

Aprox. 39 horas para completar

Sugerido: 6 weeks of study, 3-6 hours/week for base track, 6-9 with all the horrors of honors section...
Idiomas disponibles

Inglés (English)

Subtítulos: Inglés (English)
Programa Especializado
100 % en línea

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.
Nivel avanzado

Nivel avanzado

Horas para completar

Aprox. 39 horas para completar

Sugerido: 6 weeks of study, 3-6 hours/week for base track, 6-9 with all the horrors of honors section...
Idiomas disponibles

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
Horas para completar
5 horas para completar

Intro: why should i care?

In this module we gonna define and "taste" what reinforcement learning is about. We'll also learn one simple algorithm that can solve reinforcement learning problems with embarrassing efficiency....
Reading
13 videos (Total 84 min), 7 readings, 3 quizzes
Video13 videos
Reinforcement learning vs all3m
Multi-armed bandit4m
Decision process & applications6m
Markov Decision Process5m
Crossentropy method9m
Approximate crossentropy method5m
More on approximate crossentropy method6m
Evolution strategies: core idea6m
Evolution strategies: math problems5m
Evolution strategies: log-derivative trick8m
Evolution strategies: duct tape6m
Blackbox optimization: drawbacks4m
Reading7 lecturas
What you're getting into1m
Setting up course environment10m
Note: this course vs github course1m
Course teaser placeholder10m
Primers1m
About honors track1m
Extras10m
Semana
2
Horas para completar
3 horas para completar

At the heart of RL: Dynamic Programming

This week we'll consider the reinforcement learning formalisms in a more rigorous, mathematical way. You'll learn how to effectively compute the return your agent gets for a particular action - and how to pick best actions based on that return....
Reading
5 videos (Total 54 min), 2 readings, 4 quizzes
Video5 videos
State and Action Value Functions13m
Measuring Policy Optimality6m
Policy: evaluation & improvement10m
Policy and value iteration8m
Reading2 lecturas
Advanced Reward Design10m
Discrete Stochastic Dynamic Programming10m
Quiz3 ejercicios de práctica
Reward design8m
Optimality in RL10m
Policy Iteration14m
Semana
3
Horas para completar
5 horas para completar

Model-free methods

This week we'll find out how to apply last week's ideas to the real world problems: ones where you don't have a perfect model of your environment....
Reading
6 videos (Total 47 min), 1 reading, 4 quizzes
Video6 videos
Monte-Carlo & Temporal Difference; Q-learning8m
Exploration vs Exploitation8m
Footnote: Monte-Carlo vs Temporal Difference2m
Accounting for exploration. Expected Value SARSA.11m
On-policy vs off-policy; Experience replay7m
Reading1 lectura
Extras10m
Quiz1 ejercicio de práctica
Model-free reinforcement learning10m
Semana
4
Horas para completar
5 horas para completar

Approximate Value Based Methods

This week we'll learn to scale things even farther up by training agents based on neural networks....
Reading
9 videos (Total 104 min), 3 readings, 5 quizzes
Video9 videos
Loss functions in value based RL11m
Difficulties with Approximate Methods15m
DQN – bird's eye view9m
DQN – the internals9m
DQN: statistical issues6m
Double Q-learning6m
More DQN tricks10m
Partial observability17m
Reading3 lecturas
TD vs MC10m
Extras10m
DQN follow-ups10m
Quiz3 ejercicios de práctica
MC & TD8m
SARSA and QLeaning8m
DQN12m
4.3
33 revisionesChevron Right

Principales revisiones

por TCMay 17th 2018

Great course. Best course so far on reinforcement learning.

Instructores

Avatar

Pavel Shvechikov

Researcher at HSE and Sberbank AI Lab
HSE Faculty of Computer Science
Avatar

Alexander Panin

Lecturer
HSE Faculty of Computer Science

Acerca de National Research University Higher School of Economics

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communications, IT, mathematics, engineering, and more. Learn more on www.hse.ru...

Acerca del programa especializado Advanced Machine Learning

This specialization gives an introduction to deep learning, reinforcement learning, natural language understanding, computer vision and Bayesian methods. Top Kaggle machine learning practitioners and CERN scientists will share their experience of solving real-world problems and help you to fill the gaps between theory and practice. Upon completion of 7 courses you will be able to apply modern machine learning methods in enterprise and understand the caveats of real-world data and settings....
Advanced Machine Learning

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.