Acerca de este Curso

12,565 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Aprox. 20 horas para completar

Sugerido: 6 learning weeks, 10-16 hours per week...

Inglés (English)

Subtítulos: Inglés (English)

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Aprox. 20 horas para completar

Sugerido: 6 learning weeks, 10-16 hours per week...

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1

Semana 1

3 horas para completar

Conditional probability and Independence

3 horas para completar
13 videos (Total 123 minutos)
13 videos
Conditional probability. Motivation and Example13m
Conditional probability. Definition8m
Independent events. Example7m
Independent events. Definition12m
Mosaic Plot. Visualization of conditional probabilities and Independence11m
Using independence to find probabilities. Examples10m
Pairwise and mutual independence12m
Bernoulli Scheme11m
Law of total probability14m
Bayes's rule4m
Python for conditional probabilities9m
Conditional probability. Highlights3m
7 ejercicios de práctica
Coins, dices and conditional probability20m
Independence and intersection5m
Fair coin and independence6m
Mutual independence conditions5m
Call center total probability5m
Bayes's taxi companies5m
Rare disease paradox5m
Semana
2

Semana 2

3 horas para completar

Random variables

3 horas para completar
15 videos (Total 150 minutos)
15 videos
Examples of random variables11m
Mathematical definition of random variable5m
Probability distribution and probability mass function (PMF)15m
Binomial distribution10m
Expected value of random variable. Motivation and definition14m
Expected value example and calculation11m
Expected value as best prediction15m
Variance of random variable. Motivation and definition7m
Discrete random variables with infinite number of values11m
Saint Petersburg Paradox. Example of infinite expected value6m
Geometric and Poisson distributions6m
Generating discrete random variables with Python11m
Numpy, scipy and matplotlib for generation and visualization of common distributions12m
Random variables. Highlights3m
3 ejercicios de práctica
Expected value practice20m
Variance practice25m
Random variables and geometric series10m
Semana
3

Semana 3

3 horas para completar

Systems of random variables; properties of expectation and variance, covariance and correlation.

3 horas para completar
16 videos (Total 127 minutos)
16 videos
Linear transformations of random variables8m
Linearity of expected value6m
Symmetric distributions and their expected values6m
Functions of random variables5m
Properties of variance6m
Sum of random variables. Expected value and variance8m
Joint probability distribution12m
Marginal distribution8m
Independent random variables7m
Another example of non-independent random variables8m
Expected value of product of independent random variables8m
Variance of sum of random variables. Covariance11m
Properties of covariance10m
Correlation of two random variables7m
Systems of random variables. Highlights3m
7 ejercicios de práctica
PMF of linear transformations5m
Expectation properties5m
Joint distribution practice15m
Joint PMF10m
Variance of Binomial random variable5m
Covariance for a dice roll5m
Correlation quiz5m
Semana
4

Semana 4

3 horas para completar

Continuous random variables

3 horas para completar
16 videos (Total 156 minutos)
16 videos
Continuous random variables. Motivation and Example10m
Probability density function (PDF)9m
Cumulative distribution function (CDF)13m
Properties of CDF6m
Linking PDF and CDF11m
Examples of probability density functions10m
Histogram as approximation to a graph of PDF11m
Expected value of continuous random variable9m
Variance of continuous random variable. Properties of expected value and variance7m
Transformations of continuous random variables and their PDFs11m
Joint CDF and PDF. Level charts. Marginal PDF10m
Independence, covariance and correlation of continuous random variables9m
Mixed random variables. Example11m
Generating and visualizing continuous random variables with Python10m
Generating correlated random variables with Python11m
8 ejercicios de práctica
CDF of discrete random variable7m
PDF and CDF practice15m
Finding expectation with PDF5m
Finding variance with PDF5m
Expectation of a function of random variable2m
PDF practice7m
Variance of sum of Gaussian random variables5m
Distinguishing random variables3m

Instructor

Imagen del instructor, Ilya V. Schurov

Ilya V. Schurov 

Associate Professor
1,937 alumnos
2 cursos

ofrecido por

Logotipo de National Research University Higher School of Economics

National Research University Higher School of Economics

Comienza a trabajar para obtener tu maestría

Este curso es parte del Master of Data Science completamente en línea de National Research University Higher School of Economics. Si eres aceptado en el programa completo, tus cursos cuentan para tu título.

Acerca de Programa especializado Mathematics for Data Science

Behind numerous standard models and constructions in Data Science there is mathematics that makes things work. It is important to understand it to be successful in Data Science. In this specialisation we will cover wide range of mathematical tools and see how they arise in Data Science. We will cover such crucial fields as Discrete Mathematics, Calculus, Linear Algebra and Probability. To make your experience more practical we accompany mathematics with examples and problems arising in Data Science and show how to solve them in Python....
Mathematics for Data Science

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.