Acerca de este Curso
9,533 vistas recientes

Learner Career Outcomes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel principiante

Aprox. 27 horas para completar

Sugerido: 3-5 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

Habilidades que obtendrás

Python ProgrammingNumpyPandasWxpython

Learner Career Outcomes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel principiante

Aprox. 27 horas para completar

Sugerido: 3-5 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
24 minutos para completar

Welcome to learn Data Processing Using Python!

1 video (Total 4 minutos), 2 lecturas
1 video
2 lecturas
Teaching Methods10m
FAQ10m
7 horas para completar

Basics of Python

16 videos (Total 170 minutos), 5 lecturas, 3 cuestionarios
16 videos
2 The First Python Program16m
3 Basics of Python Syntax15m
4 Data Types of Python9m
5 Basic Operations of Python10m
6 Functions, Modules and Packages of Python8m
1.1 Extension: Build a Python Environment4m
1 Conditions12m
2 range5m
3 Loops15m
4 break, continue and else in Loops11m
5 Self-defined Functions14m
6 Recursion11m
7 Scope of Variable4m
A1: Standard Library Functions14m
A2: Exceptions10m
5 lecturas
1.1 Walk into Python slides10m
1.1 References10m
1.1 Programming exercises(Not Graded)10m
1.2 Multi-dimensional View of Python slides10m
1.2 Control structure & function exercises(9 questions)10m
2 ejercicios de práctica
Walk into Python quiz20m
More About Python quiz24m
Semana
2
4 horas para completar

Data Acquisition and Presentation

10 videos (Total 139 minutos), 5 lecturas, 1 cuestionario
10 videos
2 Network Data Retrieval20m
2.1 Extension: RE introduction16m
2.1 Extension: Dynamic web crawling example5m
1 Sequence8m
2 String17m
3 List14m
4 Tuple7m
2.2 Extension: IO&functional programming15m
2.2 Extension: Mutable objects modify issue9m
5 lecturas
2 Data Retrieval and Represent slides10m
2.1 Internet Data Retrival Programming exercise(Not Graded)10m
2.1 code snippets for reference only10m
Sequence fuctions practice10m
Sequences and Files Programming Exercise(8 questions)10m
1 ejercicio de práctica
Data Acquisition and Presentation quiz30m
Semana
3
3 horas para completar

Powerful Data Structures and Python Extension Libraries

9 videos (Total 109 minutos), 5 lecturas, 1 cuestionario
9 videos
2 Dictionary Use15m
3 Set11m
3.1 Extension: dict and set programming examples12m
1 Extension Library SciPy6m
2 ndarray18m
3 Series7m
4 DataFrame8m
3.2 Extension: Common numpy applications16m
5 lecturas
3 Powerful Data Structure and Software Ecosystem slides10m
3.1 Programming exercise(Not Graded)10m
3.1 Classic dict programming(1 question)10m
3.2 Programming exercise for DataFrame(Not Graded)10m
3.2 Modify the DataFrames10m
1 ejercicio de práctica
Powerful Data Structures and Python Extension Libraries quiz28m
Semana
4
10 horas para completar

Python Data Statistics and Mining

12 videos (Total 222 minutos), 13 lecturas, 3 cuestionarios
12 videos
2 Fundamentals of Python Plotting23m
3 Data Clean of Data Exploration and Preprocessing20m
4 Data Transformation of Data Precessing22m
5 Data Reduction of Data Preproccessing18m
1 Basic Data Characteristics Analysis of Data Exploration24m
2 Data Statistics and Analysis Based on pandas27m
3 Cluster Analysis14m
4 Aplications of Python into Science and Engineering Fields7m
5 Applications into Humanities and Social Sciences Fields7m
4.2 Extension: An Analysis of the Differences between Males and Females on Film Ratings17m
4.2 Extension: Classification of Red Wine Data Based on Random Forest Model21m
13 lecturas
4.1 Data retrieval and preprocessing of Python Slides10m
4.1 References10m
4.1.1 code snippets for reference only10m
4.1.3: Analyze test results using Box-plot10m
Web API - TuShare and Data Analysis ta30m
4.1 Titanic Data Set Acquisition10m
4.2 Data Statistics, Mining and Application Slides10m
4.2 code snippets for reference only10m
4.2.1 K-means algorithm an discussion on K value10m
4.2.1 Extension: Scikit-learn Machine Learning Basics10m
4.2.6 Project- —Linear Regression for Boston houses price prediction10m
4.2.6 Extension: Introduction to WAV audio processing10m
4.2.7 Learn More about NLTK10m
2 ejercicios de práctica
Data retrieval and preprocessing of Python quiz16m
Data Statistics, Mining and Application quiz20m
4.4
41 revisiones

Principales revisiones sobre Data Processing Using Python

por SROct 22nd 2018

The course provides an insight into the basic structure of Python. It will help you in navigating the areas where Python is robust and effective.

por JLSep 12th 2017

It's a basic Python lesson, but providing some data analysis and GUI concepts, which needs you to explore after this class or in the future.

Instructor

Image of instructor, ZHANG Li

ZHANG Li

associate professor
Department of Computer Science

Acerca de Universidad de Nankín

Nanjing University (NJU) is committed to excellence in teaching and research. Located on the prosperous eastern coast of China, NJU provides a dynamic environment that nurtures learning, creativity, and discovery on one of the most beautiful campuses in the country. Taking NJU's university offerings on Coursera will be a rewarding experience for learners from every corner of the world....

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando compras un Certificado, obtienes acceso a todos los materiales del curso, incluidas las tareas calificadas. Una vez que completes el curso, se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes participar del curso como oyente sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.