Acerca de este Curso
4.4
107 calificaciones
38 revisiones

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel principiante

Aprox. 27 horas para completar

Sugerido: 3-5 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

Habilidades que obtendrás

Python ProgrammingNumpyPandasWxpython

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel principiante

Aprox. 27 horas para completar

Sugerido: 3-5 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
24 minutos para completar

Welcome to learn Data Processing Using Python!

Hi, guys, welcome to learn “Data Processing Using Python”(The English version of "用Python玩转数据", url is https://www.coursera.org/learn/hipython/home/welcome)!In this course, I tell in a manner that enables non-computer majors to understand how to utilize this simple and easy programming language – Python to rapidly acquire, express, analyze and present data based on SciPy, Requests, Beautiful Soup libraries etc. Many cases are provided to enable you to easily and happily learn how to use Python to process data in many fields. ...
1 video (Total 4 minutos), 2 readings
1 video
2 lecturas
Teaching Methods10m
FAQ10m
7 horas para completar

Basics of Python

Hi, guys, welcome to learn Module 01 “Basics of Python”! I’ll first guide you to have a glimpse of its simplicity for learning as well as elegance and robustness. Less is more: the author of Python must know this idea well. After learning this module, you can master the basic language structures, data types, basic operations, conditions, loops, functions and modules in Python. With them, we can write some useful programs! ...
15 videos (Total 145 minutos), 3 readings, 3 quizzes
15 videos
2 The First Python Program15m
3 Basics of Python Syntax11m
4 Data Types of Python9m
5 Basic Operations of Python10m
6 Functions, Modules and Packages of Python7m
1 Conditions10m
2 range5m
3 Loops6m
4 break, continue and else in Loops11m
5 Self-defined Functions14m
6 Recursion7m
7 Scope of Variable4m
A1: Standard Library Functions14m
A2: Exceptions10m
3 lecturas
1.1 References10m
1.1 Programming exercises(Not Graded)10m
1.2 Control structure & function exercises(9 questions)10m
2 ejercicios de práctica
Walk into Python quiz20m
More About Python quiz24m
Semana
2
3 horas para completar

Data Acquisition and Presentation

Welcome to learn Module 02 “Data Acquisition and Presentation”! After learning this module, you can master the modes of acquiring local data and network data in Python and use the basic and yet very powerful data structure sequence, string, list and tuple in Python to fast and effectively present data and simply process data. ...
6 videos (Total 79 minutos), 5 readings, 1 quiz
6 videos
2 Network Data Retrieval21m
1 Sequence8m
2 String17m
3 List9m
4 Tuple7m
5 lecturas
2.1 References(re)10m
2.1 Internet Data Retrival Programming exercise(Not Graded)10m
2.1 code snippets for reference only10m
Sequence fuctions practice10m
Sequences and Files Programming Exercise(8 questions)10m
1 ejercicio de práctica
Data Acquisition and Presentation quiz30m
Semana
3
3 horas para completar

Powerful Data Structures and Python Extension Libraries

Welcome to learn Module 03 “Powerful Data Structures and Python Extension Libraries”! Have you felt you are closer to using Python to process data? After learning this module, you can master the intermediate-level and advanced uses of Python: data structure dictionaries and sets. In some applications, they can be very convenient. What’s special here is that, you can also feel the charm of such concise and efficient data structures: ndarray, Series and DataFrame in the most famous and widely applied scientific computing package SciPy in Python. ...
7 videos (Total 70 minutos), 5 readings, 1 quiz
7 videos
2 Dictionary Use12m
3 Set11m
1 Extension Library SciPy6m
2 ndarray12m
3 Series7m
4 DataFrame7m
5 lecturas
3.1 Programming exercise(Not Graded)10m
3.1 Classic dict programming(2 questions)10m
3.2 References10m
3.2 Programming exercise for DataFrame(Not Graded)10m
3.2 Modify the DataFrames10m
1 ejercicio de práctica
Powerful Data Structures and Python Extension Libraries quiz28m
Semana
4
8 horas para completar

Python Data Statistics and Visualization

Welcome to learn Module 04 “Python Data Statistics and Visualization”! In this module, I will show you, over the entire process of data processing, the unique advantages of Python in data processing and analysis, and use many cases familiar to and loved by us to learn about and master methods and characteristics. After learning this module, you can fast and effectively mine your desired or expected or unknown results from a large amount of data, and can also present those data in various images. In addition, the data statistics modes of all third party packages in Python are extraordinarily and surprisingly strong, but we, as average persons, can still understand and possess them. ...
14 videos (Total 110 minutos), 12 readings, 3 quizzes
14 videos
2 Data Preparations6m
3 Data Display4m
4 Data Selection8m
5 Simple Statistics and Processing8m
6 Grouping4m
7 Merge8m
1 Cluster12m
2 Basics of Matplotlib Plotting7m
3 Control of Matplotlib Image Attributes9m
4 Plotting with pandas6m
5 Data Access4m
6 Applications of Python into Science and Engineering Fields7m
7 Applications into Humanities and Social Sciences Fields7m
12 lecturas
4.1 References10m
4.1.1 code snippets for reference only10m
4.1.2 code snippets for reference only10m
Web API - TuShare and Data Analysis ta30m
4.2 code snippets for reference only10m
4.2 Programming exercise for comparing the stock data(No Graded)10m
4.2.1K-means algorithm10m
4.2.1 Extension: Scikit-learn Machine Learning Basics10m
4.2.4&4.2.5: Analyze test results using Box-plot10m
4.2.6 Extension: Introduction to WAV audio processing10m
4.2.6 Project- —Linear Regression for Boston houses price prediction10m
4.2.7 Learn More about NLTK10m
2 ejercicios de práctica
Basic Data Statistics of Python quiz16m
Advanced Data Processing and Visualization of Python quiz20m
4.4
38 revisionesChevron Right

50%

comenzó una nueva carrera después de completar estos cursos

50%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

50%

consiguió un aumento de sueldo o ascenso

Principales revisiones

por SROct 22nd 2018

The course provides an insight into the basic structure of Python. It will help you in navigating the areas where Python is robust and effective.

por JLSep 12th 2017

It's a basic Python lesson, but providing some data analysis and GUI concepts, which needs you to explore after this class or in the future.

Instructor

Avatar

ZHANG Li

associate professor
Department of Computer Science

Acerca de Universidad de Nankín

Nanjing University (NJU) is committed to excellence in teaching and research. Located on the prosperous eastern coast of China, NJU provides a dynamic environment that nurtures learning, creativity, and discovery on one of the most beautiful campuses in the country. Taking NJU's university offerings on Coursera will be a rewarding experience for learners from every corner of the world....

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando compras un Certificado, obtienes acceso a todos los materiales del curso, incluidas las tareas calificadas. Una vez que completes el curso, se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes participar del curso como oyente sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.