Chevron Left
Volver a Investigación reproducible

Opiniones y comentarios de aprendices correspondientes a Investigación reproducible por parte de Universidad Johns Hopkins

4.6
estrellas
4,065 calificaciones
584 reseña

Acerca del Curso

Este curso se centra en los conceptos y las herramientas que permiten realizar análisis de datos modernos de forma reproducible. La investigación reproducible se basa en la idea de que los análisis de datos y, en general, las afirmaciones científicas, se publican con sus datos y el código del software para que otros puedan verificar los hallazgos y basarse en ellos. La necesidad de reproducibilidad aumenta drásticamente a medida que los análisis de datos se vuelven más complejos, con conjuntos de datos más grandes y cálculos más sofisticados. La reproducibilidad permite que las personas se centren en el contenido real de un análisis de datos, en lugar de en los detalles superficiales que aparecen en un resumen escrito. Además, la reproducibilidad hace que un análisis sea más útil para otros, ya que los datos y el código que en realidad permitieron llevar a cabo el análisis están disponibles. Este curso se centrará en las herramientas de análisis estadístico alfabetizadas que permiten publicar los análisis de datos en un único documento que permite a otros ejecutar fácilmente el mismo análisis para obtener los mismos resultados....

Principales reseñas

AA
12 de feb. de 2016

My favorite course, at least it gives me an argument why scripted statistics is awesome and can be applied to a number of data related activities. Recycling chunks of code has proven useful to me.

RR
19 de ago. de 2020

A very important course that greatly improved my ability to communicate the findings of any sort of data analysis that I perform. This is a critical skill to acquire to "deliver the means."

Filtrar por:

76 - 100 de 567 revisiones para Investigación reproducible

por Tseliso I M

11 de nov. de 2017

Reproducibility is one of the key elements of modern scientific method. The course was very informative and introduce ideas I did not know before, but are crucial.

por Christian H

10 de nov. de 2016

This course helped me realize why reproducible research is absolutely necessary, and gave me the tools to implement reproducibility in my work. Project was great.

por Himanshu R

25 de ene. de 2018

A good informative course to inform about importance of "Reproducible Research", also a good one for practicing code writing and publishing in RPubs and Github.

por Joshua B M

4 de mar. de 2016

This class's R markdown material taught me to efficiently convey and market data analysis to non-specialists of data. It was immediately valuable to my career.

por Subramanya N

12 de dic. de 2017

Good info on RStudio & RR.

I can easily figure out who has attended this course by their methodical nature and work when I see Kaggle competitions. Great job!

por Johann R

7 de jun. de 2017

A handy course to do when you have to create and submit reports with calculations and code. Learn the basic principles of report writing and report structure.

por RR A I

22 de sep. de 2020

Though I could not solve all course projects on my own, I at least understood the techniques and enjoyed doing the course greatly. Thanks to the instructors

por Camilo Y

10 de ene. de 2017

I found all the topics of this course important. Not only for my professional career but also for everyone who is involved with data and science in general.

por Andrea G

11 de may. de 2020

Very important course. Not so many fancy analysis but it introduces to Markdown and explains well what does it mean to do data science within a community.

por Devanathan R

7 de feb. de 2016

a very important part of data analysis. I especially found the case study in week 4 to be of tremendous interest highlighting the real world applications.

por Charles M

25 de abr. de 2019

Great course. This and the previous course in the data scientist specialization are extremely practical and I've found immediate utility in my career.

por Marco A I E

20 de sep. de 2018

Very interesting, the fact that our research procedure can be explained and showed to other to reproduce, validate and work on top of it is fantastic.

por Jessica R

11 de ago. de 2019

Very useful in bringing together skills learned in the earlier courses of the Data Science specialization: R programming, R Markdown, knit, RPubs.

por Arturo P

22 de jun. de 2021

A relly nice course, it is not really difficult at all but it's really useful overall for researchers and making reports, i recommend it so much.

por Connor G

30 de ago. de 2017

Very important subject matter taught well. My only qualm is that the final project was more difficult than I expected it to be given the content.

por Praveen k

18 de oct. de 2018

Good course. Examples given throughout the course are biological based so it is little hard to understand completely because they are technical

por Marco B

5 de dic. de 2017

this course is incredibly useful!

in my job i practice data analysis everyday and this course helped me to do everything in a more efficent way!

por Charly A

26 de nov. de 2016

Excellent content and plan. The delivery is fantastic and the professor's explanatory clarity is top notch. I highly recommend this course.

por Warren F

16 de ago. de 2016

Slightly less information than the previous courses in DS spec but important for someone who has not done scientific research in the past.

por Prairy

17 de mar. de 2016

Excellent course that is both well presented and very clear, providing many examples and opportunities to practice throughout the course.

por Tine M

22 de ene. de 2018

Very interesting course, I was able to apply what I learned in the previous courses of the specialization, and that was a good exercise.

por Anirban C

15 de ago. de 2017

Nice course! It helped me to understand the concepts of markdown and related R modules. The assignments were challenging and fun to do.

por Nino P

24 de may. de 2019

To be a data scientist you must use RMarkDown. Here you learn how to use it. A must do course for data scientists and highly valuable.

por Keidzh S

24 de abr. de 2018

Thank you so much. Representatives lessons in my opinion very effective. I learn so much about html and markdown files in this course.

por Leandro F

28 de feb. de 2017

One of my favourites. The course is easy to follow and the idea of having a self-contained and reproducible document is very powerful.