Acerca de este Curso

116,256 vistas recientes
Certificado para compartir
Obtén un certificado al finalizar
100 % en línea
Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles
Restablece las fechas límite en función de tus horarios.
Nivel avanzado

This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics.

Aprox. 27 horas para completar
Inglés (English)
Certificado para compartir
Obtén un certificado al finalizar
100 % en línea
Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles
Restablece las fechas límite en función de tus horarios.
Nivel avanzado

This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics.

Aprox. 27 horas para completar
Inglés (English)

ofrecido por

Placeholder

Universidad de Toronto

Programa - Qué aprenderás en este curso

Calificación del contenidoThumbs Up95%(1,543 calificaciones)Info
Semana
1

Semana 1

2 horas para completar

Module 0: Welcome to Course 2: State Estimation and Localization for Self-Driving Cars

2 horas para completar
9 videos (Total 33 minutos), 3 lecturas
9 videos
Welcome to the Course3m
Meet the Instructor, Jonathan Kelly2m
Meet the Instructor, Steven Waslander5m
Meet Diana, Firmware Engineer2m
Meet Winston, Software Engineer3m
Meet Andy, Autonomous Systems Architect2m
Meet Paul Newman, Founder, Oxbotica & Professor at University of Oxford5m
The Importance of State Estimation1m
3 lecturas
Course Prerequisites: Knowledge, Hardware & Software15m
How to Use Discussion Forums15m
How to Use Supplementary Readings in This Course15m
7 horas para completar

Module 1: Least Squares

7 horas para completar
4 videos (Total 33 minutos), 3 lecturas, 3 cuestionarios
4 videos
Lesson 1 (Part 2): Squared Error Criterion and the Method of Least Squares6m
Lesson 2: Recursive Least Squares7m
Lesson 3: Least Squares and the Method of Maximum Likelihood8m
3 lecturas
Lesson 1 Supplementary Reading: The Squared Error Criterion and the Method of Least Squares45m
Lesson 2 Supplementary Reading: Recursive Least Squares30m
Lesson 3 Supplementary Reading: Least Squares and the Method of Maximum Likelihood30m
3 ejercicios de práctica
Lesson 1: Practice Quiz30m
Lesson 2: Practice Quiz30m
Module 1: Graded Quiz50m
Semana
2

Semana 2

7 horas para completar

Module 2: State Estimation - Linear and Nonlinear Kalman Filters

7 horas para completar
6 videos (Total 53 minutos), 5 lecturas, 1 cuestionario
6 videos
Lesson 2: Kalman Filter and The Bias BLUEs5m
Lesson 3: Going Nonlinear - The Extended Kalman Filter9m
Lesson 4: An Improved EKF - The Error State Extended Kalman Filter6m
Lesson 5: Limitations of the EKF7m
Lesson 6: An Alternative to the EKF - The Unscented Kalman Filter15m
5 lecturas
Lesson 1 Supplementary Reading: The Linear Kalman Filter45m
Lesson 2 Supplementary Reading: The Kalman Filter - The Bias BLUEs10m
Lesson 3 Supplementary Reading: Going Nonlinear - The Extended Kalman Filter45m
Lesson 4 Supplementary Reading: An Improved EKF - The Error State Kalman FIlter1h
Lesson 6 Supplementary Reading: An Alternative to the EKF - The Unscented Kalman Filter30m
Semana
3

Semana 3

2 horas para completar

Module 3: GNSS/INS Sensing for Pose Estimation

2 horas para completar
4 videos (Total 34 minutos), 3 lecturas, 1 cuestionario
4 videos
Lesson 2: The Inertial Measurement Unit (IMU)10m
Lesson 3: The Global Navigation Satellite Systems (GNSS)8m
Why Sensor Fusion?3m
3 lecturas
Lesson 1 Supplementary Reading: 3D Geometry and Reference Frames10m
Lesson 2 Supplementary Reading: The Inertial Measurement Unit (IMU)30m
Lesson 3 Supplementary Reading: The Global Navigation Satellite System (GNSS)15m
1 ejercicio de práctica
Module 3: Graded Quiz50m
Semana
4

Semana 4

2 horas para completar

Module 4: LIDAR Sensing

2 horas para completar
4 videos (Total 48 minutos), 3 lecturas, 1 cuestionario
4 videos
Lesson 2: LIDAR Sensor Models and Point Clouds12m
Lesson 3: Pose Estimation from LIDAR Data17m
Optimizing State Estimation3m
3 lecturas
Lesson 1 Supplementary Reading: Light Detection and Ranging Sensors10m
Lesson 2 Supplementary Reading: LIDAR Sensor Models and Point Clouds10m
Lesson 3 Supplementary Reading: Pose Estimation from LIDAR Data30m
1 ejercicio de práctica
Module 4: Graded Quiz30m

Reseñas

Principales reseñas sobre STATE ESTIMATION AND LOCALIZATION FOR SELF-DRIVING CARS

Ver todas las reseñas

Acerca de Programa especializado: Automóviles de auto conducción

Automóviles de auto conducción

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.