Acerca de este Curso
49,845 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel avanzado

This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics.

Aprox. 25 horas para completar

Sugerido: 4 weeks of study, 5-6 hours per week...

Inglés (English)

Subtítulos: Inglés (English)

Qué aprenderás

  • Check

    Understand the key methods for parameter and state estimation used for autonomous driving, such as the method of least-squares

  • Check

    Develop a model for typical vehicle localization sensors, including GPS and IMUs

  • Check

    Apply extended and unscented Kalman Filters to a vehicle state estimation problem

  • Check

    Apply LIDAR scan matching and the Iterative Closest Point algorithm

Los estudiantes que toman este Course son
  • Machine Learning Engineers
  • Data Scientists
  • Engineers
  • Researchers
  • Software Engineers

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel avanzado

This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics.

Aprox. 25 horas para completar

Sugerido: 4 weeks of study, 5-6 hours per week...

Inglés (English)

Subtítulos: Inglés (English)

Aspectos destacados del curso

featured

Perspectivas de la industria

Los oradores invitados comparten sus experiencias

Las entrevistas en video te permitirán escuchar la opinión de ingenieros especializados en el área de la tecnología de vehículos autónomos para comprender qué habilidades necesitas para avanzar en la industria.

Programa - Qué aprenderás en este curso

Semana
1
2 horas para completar

Module 0: Welcome to Course 2: State Estimation and Localization for Self-Driving Cars

9 videos (Total 33 minutos), 3 lecturas
9 videos
Welcome to the Course3m
Meet the Instructor, Jonathan Kelly2m
Meet the Instructor, Steven Waslander5m
Meet Diana, Firmware Engineer2m
Meet Winston, Software Engineer3m
Meet Andy, Autonomous Systems Architect2m
Meet Paul Newman, Founder, Oxbotica & Professor at University of Oxford5m
The Importance of State Estimation1m
3 lecturas
Course Prerequisites: Knowledge, Hardware & Software15m
How to Use Discussion Forums15m
How to Use Supplementary Readings in This Course15m
7 horas para completar

Module 1: Least Squares

4 videos (Total 33 minutos), 3 lecturas, 3 cuestionarios
4 videos
Lesson 1 (Part 2): Squared Error Criterion and the Method of Least Squares6m
Lesson 2: Recursive Least Squares7m
Lesson 3: Least Squares and the Method of Maximum Likelihood8m
3 lecturas
Lesson 1 Supplementary Reading: The Squared Error Criterion and the Method of Least Squares45m
Lesson 2 Supplementary Reading: Recursive Least Squares30m
Lesson 3 Supplementary Reading: Least Squares and the Method of Maximum Likelihood30m
3 ejercicios de práctica
Lesson 1: Practice Quiz30m
Lesson 2: Practice Quiz30m
Module 1: Graded Quiz50m
Semana
2
7 horas para completar

Module 2: State Estimation - Linear and Nonlinear Kalman Filters

6 videos (Total 53 minutos), 5 lecturas, 1 cuestionario
6 videos
Lesson 2: Kalman Filter and The Bias BLUEs5m
Lesson 3: Going Nonlinear - The Extended Kalman Filter9m
Lesson 4: An Improved EKF - The Error State Extended Kalman Filter6m
Lesson 5: Limitations of the EKF7m
Lesson 6: An Alternative to the EKF - The Unscented Kalman Filter15m
5 lecturas
Lesson 1 Supplementary Reading: The Linear Kalman Filter45m
Lesson 2 Supplementary Reading: The Kalman Filter - The Bias BLUEs10m
Lesson 3 Supplementary Reading: Going Nonlinear - The Extended Kalman Filter45m
Lesson 4 Supplementary Reading: An Improved EKF - The Error State Kalman FIlter1h
Lesson 6 Supplementary Reading: An Alternative to the EKF - The Unscented Kalman Filter30m
Semana
3
2 horas para completar

Module 3: GNSS/INS Sensing for Pose Estimation

4 videos (Total 34 minutos), 3 lecturas, 1 cuestionario
4 videos
Lesson 2: The Inertial Measurement Unit (IMU)10m
Lesson 3: The Global Navigation Satellite Systems (GNSS)8m
Why Sensor Fusion?3m
3 lecturas
Lesson 1 Supplementary Reading: 3D Geometry and Reference Frames10m
Lesson 2 Supplementary Reading: The Inertial Measurement Unit (IMU)30m
Lesson 3 Supplementary Reading: The Global Navigation Satellite System (GNSS)15m
1 ejercicio de práctica
Module 3: Graded Quiz50m
Semana
4
2 horas para completar

Module 4: LIDAR Sensing

4 videos (Total 48 minutos), 3 lecturas, 1 cuestionario
4 videos
Lesson 2: LIDAR Sensor Models and Point Clouds12m
Lesson 3: Pose Estimation from LIDAR Data17m
Optimizing State Estimation3m
3 lecturas
Lesson 1 Supplementary Reading: Light Detection and Ranging Sensors10m
Lesson 2 Supplementary Reading: LIDAR Sensor Models and Point Clouds10m
Lesson 3 Supplementary Reading: Pose Estimation from LIDAR Data30m
1 ejercicio de práctica
Module 4: Graded Quiz30m
4.6
29 revisionesChevron Right

Principales revisiones sobre State Estimation and Localization for Self-Driving Cars

por RLApr 27th 2019

It provides a hand-on experience in implementing part of the localization process...interesting stuff!! Kind of time-consuming so be prepared.

por MIAug 12th 2019

Very interesting course if you want to learn about the different filters used in self driving cars for sensor fusion

Instructores

Avatar

Jonathan Kelly

Assistant Professor
Aerospace Studies
Avatar

Steven Waslander

Associate Professor
Aerospace Studies

Acerca de Universidad de Toronto

Established in 1827, the University of Toronto is one of the world’s leading universities, renowned for its excellence in teaching, research, innovation and entrepreneurship, as well as its impact on economic prosperity and social well-being around the globe. ...

Acerca de Programa especializado Automóviles de auto conducción

Be at the forefront of the autonomous driving industry. With market researchers predicting a $42-billion market and more than 20 million self-driving cars on the road by 2025, the next big job boom is right around the corner. This Specialization gives you a comprehensive understanding of state-of-the-art engineering practices used in the self-driving car industry. You'll get to interact with real data sets from an autonomous vehicle (AV)―all through hands-on projects using the open source simulator CARLA. Throughout your courses, you’ll hear from industry experts who work at companies like Oxbotica and Zoox as they share insights about autonomous technology and how that is powering job growth within the field. You’ll learn from a highly realistic driving environment that features 3D pedestrian modelling and environmental conditions. When you complete the Specialization successfully, you’ll be able to build your own self-driving software stack and be ready to apply for jobs in the autonomous vehicle industry. It is recommended that you have some background in linear algebra, probability, statistics, calculus, physics, control theory, and Python programming. You will need these specifications in order to effectively run the CARLA simulator: Windows 7 64-bit (or later) or Ubuntu 16.04 (or later), Quad-core Intel or AMD processor (2.5 GHz or faster), NVIDIA GeForce 470 GTX or AMD Radeon 6870 HD series card or higher, 8 GB RAM, and OpenGL 3 or greater (for Linux computers)....
Automóviles de auto conducción

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.