Chevron Left
Volver a Improving your statistical inferences

Opiniones y comentarios de aprendices correspondientes a Improving your statistical inferences por parte de Universidad Técnica de Eindhoven

4.9
estrellas
731 calificaciones

Acerca del Curso

This course aims to help you to draw better statistical inferences from empirical research. First, we will discuss how to correctly interpret p-values, effect sizes, confidence intervals, Bayes Factors, and likelihood ratios, and how these statistics answer different questions you might be interested in. Then, you will learn how to design experiments where the false positive rate is controlled, and how to decide upon the sample size for your study, for example in order to achieve high statistical power. Subsequently, you will learn how to interpret evidence in the scientific literature given widespread publication bias, for example by learning about p-curve analysis. Finally, we will talk about how to do philosophy of science, theory construction, and cumulative science, including how to perform replication studies, why and how to pre-register your experiment, and how to share your results following Open Science principles. In practical, hands on assignments, you will learn how to simulate t-tests to learn which p-values you can expect, calculate likelihood ratio's and get an introduction the binomial Bayesian statistics, and learn about the positive predictive value which expresses the probability published research findings are true. We will experience the problems with optional stopping and learn how to prevent these problems by using sequential analyses. You will calculate effect sizes, see how confidence intervals work through simulations, and practice doing a-priori power analyses. Finally, you will learn how to examine whether the null hypothesis is true using equivalence testing and Bayesian statistics, and how to pre-register a study, and share your data on the Open Science Framework. All videos now have Chinese subtitles. More than 30.000 learners have enrolled so far! If you enjoyed this course, I can recommend following it up with me new course "Improving Your Statistical Questions"...

Principales reseñas

MS

13 de may. de 2021

Eye opening course. My first introduction to some of the issues surrounding p-values as well as how to better utilize them and what they truly represent. My first introduction to effect sizes as well.

VM

10 de jul. de 2021

Solid course which taught me how to interpret p-values in a variety of contexts and taught me to not just to consider but (systematic and practical) ways of how to correct for publication bias.

Filtrar por:

176 - 200 de 238 revisiones para Improving your statistical inferences

por Lim K Y

23 de ago. de 2020

por Florian W

14 de mar. de 2020

por Md. M I C

3 de ene. de 2017

por Marco Z

21 de jul. de 2021

por Tiago L

24 de ago. de 2020

por Fernando B

3 de sep. de 2021

por Kıvanç K

20 de ago. de 2020

por Shringi

24 de abr. de 2020

por Tomás d l R M

8 de nov. de 2019

por Heidi M

30 de dic. de 2016

por Justyna J Z

29 de abr. de 2018

por Jesús D Z M

12 de jun. de 2017

por Bruno V

19 de feb. de 2019

por Peter K

1 de mar. de 2019

por CRISTIAN C L V

12 de jun. de 2020

por Miruš J

20 de nov. de 2020

por Reuben A

17 de abr. de 2019

por Leon W

26 de nov. de 2016

por Brendan P

21 de oct. de 2017

por Siméon C

6 de dic. de 2020

por MASCIANTONIO

8 de jun. de 2020

por Rossella M

25 de mar. de 2020

por JOHN Q

4 de jun. de 2017

por JUNAID A

29 de jun. de 2021

por Eleonora N

17 de jul. de 2020