Chevron Left
Volver a Statistics for Data Science with Python

Opiniones y comentarios de aprendices correspondientes a Statistics for Data Science with Python por parte de Habilidades en redes de IBM

263 calificaciones

Acerca del Curso

This Statistics for Data Science course is designed to introduce you to the basic principles of statistical methods and procedures used for data analysis. After completing this course you will have practical knowledge of crucial topics in statistics including - data gathering, summarizing data using descriptive statistics, displaying and visualizing data, examining relationships between variables, probability distributions, expected values, hypothesis testing, introduction to ANOVA (analysis of variance), regression and correlation analysis. You will take a hands-on approach to statistical analysis using Python and Jupyter Notebooks – the tools of choice for Data Scientists and Data Analysts. At the end of the course, you will complete a project to apply various concepts in the course to a Data Science problem involving a real-life inspired scenario and demonstrate an understanding of the foundational statistical thinking and reasoning. The focus is on developing a clear understanding of the different approaches for different data types, developing an intuitive understanding, making appropriate assessments of the proposed methods, using Python to analyze our data, and interpreting the output accurately. This course is suitable for a variety of professionals and students intending to start their journey in data and statistics-driven roles such as Data Scientists, Data Analysts, Business Analysts, Statisticians, and Researchers. It does not require any computer science or statistics background. We strongly recommend taking the Python for Data Science course before starting this course to get familiar with the Python programming language, Jupyter notebooks, and libraries. An optional refresher on Python is also provided. After completing this course, a learner will be able to: ✔Calculate and apply measures of central tendency and measures of dispersion to grouped and ungrouped data. ✔Summarize, present, and visualize data in a way that is clear, concise, and provides a practical insight for non-statisticians needing the results. ✔Identify appropriate hypothesis tests to use for common data sets. ✔Conduct hypothesis tests, correlation tests, and regression analysis. ✔Demonstrate proficiency in statistical analysis using Python and Jupyter Notebooks....

Principales reseñas


19 de ene. de 2021

The final assignment is very well designed, I was able to review the entire course material and consolidate the learning. I have now a good understanding of hypothesis testing.


13 de ene. de 2021

A well structured course, simple and direct to the point, with a little of exercising you'll come out with a huge understanding of the statistical concepts.

Filtrar por:

1 - 25 de 61 revisiones para Statistics for Data Science with Python

por Brandon B

17 de ene. de 2021

por Hưng V

28 de may. de 2021

por cynthia e

16 de nov. de 2020

por Ofure E

3 de nov. de 2020

por Zara U

9 de nov. de 2020

por Nabilla A

9 de nov. de 2020

por Alfred K S

29 de dic. de 2020

por Domenic P

18 de may. de 2022

por Ebenezer D

20 de nov. de 2020

por Pritesh V

25 de ago. de 2022

por Heinz D

7 de feb. de 2021

por Andreas F

21 de feb. de 2021

por Robert S

6 de abr. de 2021

por Elizabeth T

15 de jun. de 2021

por Lucian P

18 de ene. de 2022

por Anastasiya K

12 de feb. de 2021

por Jaelin L

22 de mar. de 2022

por Jason C

12 de sep. de 2021

por Himanshu D

2 de abr. de 2022

por Marcelo d C

1 de dic. de 2021

por Joao L

20 de ene. de 2021

por Hichem D

14 de ene. de 2021

por Yodefia R

27 de jul. de 2021

por Ajay K S

3 de may. de 2022

por Piotr K

30 de may. de 2022