Acerca de este Curso

60,649 vistas recientes

Resultados profesionales del estudiante

33%

comenzó una nueva carrera después de completar estos cursos

43%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

50%

consiguió un aumento de sueldo o ascenso

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel avanzado

Aprox. 39 horas para completar

Sugerido: 4 недели обучения, через 2-4 часа / неделю...

Ruso (Russian)

Subtítulos: Ruso (Russian)

Habilidades que obtendrás

A/B TestingData AnalysisCorrelation And DependenceStatistical Hypothesis TestingStatistics

Resultados profesionales del estudiante

33%

comenzó una nueva carrera después de completar estos cursos

43%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

50%

consiguió un aumento de sueldo o ascenso

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel avanzado

Aprox. 39 horas para completar

Sugerido: 4 недели обучения, через 2-4 часа / неделю...

Ruso (Russian)

Subtítulos: Ruso (Russian)

Programa - Qué aprenderás en este curso

Semana
1

Semana 1

6 horas para completar

Интервалы и гипотезы

6 horas para completar
21 videos (Total 106 minutos), 14 lecturas, 5 cuestionarios
21 videos
Как устроена специализация, и зачем ее проходить3m
Выводы и рациональность2m
Проблемы построения выводов1m
Примеры прикладных задач1m
Как устроен этот курс1m
МФТИ1m
Интервальные оценки с помощью квантилей4m
Доверительные интервалы с помощью квантилей6m
Распределения, производные от нормального5m
Доверительные интервалы для среднего8m
Доверительные интервалы для доли8m
Доверительные интервалы для двух долей5m
Доверительные интервалы на основе бутстрепа8m
Проверка гипотез: начало5m
Ошибки I и II рода3m
Достигаемый уровень значимости2m
Статистическая и практическая значимость6m
Биномиальный критерий для доли7m
Критерии согласия Пирсона (хи-квадрат)5m
Связь между проверкой гипотез и доверительными интервалами8m
14 lecturas
Формат специализации и получение сертификата10m
МФТИ10m
Немного о Yandex10m
Forum&Chat10m
Доверительные интервалы для среднего [ipython notebook]10m
Доверительные интервалы для доли [ipython notebook]10m
Доверительные интервалы для двух долей [ipython notebook]10m
Доверительные интервалы на основе бутстрепа [ipython notebook]10m
Слайды к лекциям10m
Конспект10m
Биномиальный критерий для доли [ipython notebook]10m
Критерии согласия Пирсона (хи-квадрат) [ipython notebook]10m
Слайды к лекциям10m
Конспект10m
5 ejercicios de práctica
Доверительные интервалы для среднего14m
Доверительные интервалы для долей12m
Доверительные интервалы16m
Теория проверки гипотез14m
Практика проверки гипотез10m
Semana
2

Semana 2

5 horas para completar

АБ-тестирование

5 horas para completar
21 videos (Total 137 minutos), 10 lecturas, 4 cuestionarios
21 videos
Где используется АБ-тестирование3m
Метрики4m
Дизайн эксперимента4m
Устойчивость6m
Размер выборки3m
Одновыборочные критерии Стьюдента10m
Двухвыборочные критерии Стьюдента, независимые выборки7m
Двухвыборочные критерии Стьюдента, связанные выборки4m
Нормальность выборок8m
Пример: применение критериев Стьюдента9m
Гипотезы о долях8m
Пример: проверка гипотез о долях8m
Как работают непараметрические критерии?2m
Критерии знаков6m
Ранговые критерии9m
Перестановочные критерии8m
Перестановки и бутстреп7m
Пример: одновыборочные непараметрические критерии7m
Пример: двухвыборочные непараметрические критерии (связанные выборки)6m
Пример: двухвыборочные непараметрические критерии (независимые выборки)6m
10 lecturas
Конспект10m
Применение критериев Стьюдента [ipython notebook]10m
Проверка гипотез о долях [ipython notebook]10m
Слайды к лекциям10m
Конспект10m
Одновыборочные непараметрические критерии [ipython notebook]10m
Двухвыборочные непараметрические критерии (связанные выборки) [ipython notebook]10m
Двухвыборочные непараметрические критерии (независимые выборки) [ipython notebook]10m
Слайды к лекциям10m
Конспект10m
4 ejercicios de práctica
Планирование эксперимента8m
Критерии Стьюдента14m
Параметрические критерии14m
Непараметрические критерии14m
Semana
3

Semana 3

6 horas para completar

Закономерности и зависимости

6 horas para completar
22 videos (Total 144 minutos), 11 lecturas, 6 cuestionarios
22 videos
Внешние факторы, влияющие на продажи4m
Корреляция Пирсона3m
Корреляция Спирмена3m
Корреляция Мэтьюса и коэффициент Крамера4m
Пример: поиск взаимосвязей с помощью корреляции7m
Значимость корреляции8m
Булщит и консервативность8m
Корреляция и причинно-следственная связь3m
В чем проблема?5m
Постановка4m
FWER. Поправка Бонферрони5m
FWER. Метод Холма4m
FDR. Метод Бенджамини-Хохберга5m
Пример: поправки на множественную проверку при корреляционном анализе7m
Анализ подгрупп6m
Взаимосвязь нескольких признаков4m
Свойства решения задачи8m
Интервалы и гипотезы9m
Проверка предположений7m
Регрессия и причинно-следственные связи9m
Пример: оценка зависимости с помощью регрессии19m
11 lecturas
Конспект10m
Поиск взаимосвязей с помощью корреляции [ipython notebook]10m
Слайды к лекциям10m
Конспект10m
Поправки на множественную проверку при корреляционном анализе [ipython notebook]10m
Слайды к лекциям10m
Конспект10m
Оценка зависимости с помощью регрессии [ipython notebook]10m
Слайды к лекциям10m
Конспект10m
Q&A10m
6 ejercicios de práctica
Коэффициенты корреляции10m
Корреляционный анализ20m
Поправки на множественную проверку12m
Множественная проверка гипотез16m
Теория построения регрессии10m
Практика построения регрессии20m
Semana
4

Semana 4

1 hora para completar

Неделя задач

1 hora para completar
3 lecturas
3 lecturas
Список литературы10m
Финальные титры10m
Стань ментором специализации10m
6 horas para completar

Неделя задач: Lesson Choices

6 horas para completar
4 videos (Total 57 minutos)
4 videos
Интервью с Алексеем Шатерниковым про скоринг15m
Интервью с Еленой Кунаковой18m
Интервью с Алексеем Шатерниковым про отток12m
2 ejercicios de práctica
Анализ результатов АБ-теста14m
Анализ эффективности удержания18m

Revisiones

Principales revisiones sobre ПОСТРОЕНИЕ ВЫВОДОВ ПО ДАННЫМ
Ver todos los comentarios

Acerca de Instituto de Física y Tecnología de Moscú

Московский физико-технический институт (Физтех) является одним из ведущих вузов страны и входит в основные рейтинги лучших университетов мира. Институт обладает не только богатой историей – основателями и профессорами института были Нобелевские лауреаты Пётр Капица, Лев Ландау и Николай Семенов – но и большой научно-исследовательской базой. Основой образования в МФТИ является уникальная «система Физтеха», сформулированная Петром Капицей: кропотливый отбор одаренных и склонных к творческой работе абитуриентов; участие в обучении ведущих научных работников; индивидуальный подход к отдельным студентам с целью развития их творческих задатков; воспитание с первых шагов в атмосфере технических исследований и конструктивного творчества с использованием потенциала лучших лабораторий страны. Среди выпускников МФТИ — нобелевские лауреаты Андрей Гейм и Константин Новоселов, основатель компании ABBYY Давид Ян, один из авторов архитектурных принципов построения вычислительных комплексов Борис Бабаян и др....

Acerca de Yandex

Yandex is a technology company that builds intelligent products and services powered by machine learning. Our goal is to help consumers and businesses better navigate the online and offline world....

Acerca de E-Learning Development Fund

Фонд развития онлайн-образования (ФРОО) объединяет образовательные стартапы, проекты в области EdTech и запускает собственные онлайн-программы в области машинного обучения, программирования, мобильной разработки, VR, дизайна и IT. Мы выстраиваем экосистему для обучения на всех стадиях жизненного цикла: от идеи и поиска средств на производство образовательной программы до поддержки, продаж и маркетинга. А сотрудничество с крупнейшими образовательными платформами позволяет запускать онлайн-курсы с максимальным эффектом и пользой для всех заинтересованных сторон....

Acerca de Programa especializado Машинное обучение и анализ данных

Мы покажем, как проходит полный цикл анализа, от сбора данных до выбора оптимального решения и оценки его качества. Вы научитесь пользоваться современными аналитическими инструментами и адаптировать их под особенности конкретных задач. В рамках специализации вы освоите основные темы, необходимые в работе с большим массивом данных, в т.ч. современные методы классификации и регрессии, поиск структуры в данных, проведение экспериментов, построение выводов, базовая фундаментальная математика, основы программирования на Python. Мы разберём, как построить рекомендательную систему, оценить эмоциональную окраску текста, спрогнозировать спрос на товар, оценить вероятность клика по рекламе и т.д. В финале вам потребуется выполнить проект собственной системы, решающей любую актуальную для бизнеса задачу. Результатом будет наглядная работающая модель, которую вы сможете использовать в вашей повседневной работе или продемонстрировать на собеседовании. Все, прошедшие специализацию, могут принять участие в Программе трудоустройства. Если вы заинтересованы в новых проектах, новых перспективах и возможностях - пройдите обучение по Специализации и подайте заявку....
Машинное обучение и анализ данных

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.