Acerca de este Curso
4.4
402 calificaciones
88 revisiones
Programa Especializado
100 % en línea

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.
Horas para completar

Aprox. 20 horas para completar

Sugerido: 6 hours/week...
Idiomas disponibles

Inglés (English)

Subtítulos: Inglés (English)

Habilidades que obtendrás

Information Retrieval (IR)Document RetrievalMachine LearningRecommender Systems
Programa Especializado
100 % en línea

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.
Horas para completar

Aprox. 20 horas para completar

Sugerido: 6 hours/week...
Idiomas disponibles

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
Horas para completar
2 horas para completar

Orientation

You will become familiar with the course, your classmates, and our learning environment. The orientation will also help you obtain the technical skills required for the course....
Reading
2 videos (Total 15 minutos), 6 readings, 2 quizzes
Video2 videos
Course Introduction Video11m
Reading6 lecturas
Welcome to Text Retrieval and Search Engines!10m
Syllabus10m
About the Discussion Forums10m
Updating your Profile10m
Social Media10m
Course Errata10m
Quiz2 ejercicios de práctica
Orientation Quiz15m
Pre-Quiz30m
Horas para completar
4 horas para completar

Week 1

During this week's lessons, you will learn of natural language processing techniques, which are the foundation for all kinds of text-processing applications, the concept of a retrieval model, and the basic idea of the vector space model. ...
Reading
6 videos (Total 94 minutos), 1 reading, 2 quizzes
Video6 videos
Lesson 1.2: Text Access9m
Lesson 1.3: Text Retrieval Problem26m
Lesson 1.4: Overview of Text Retrieval Methods10m
Lesson 1.5: Vector Space Model - Basic Idea9m
Lesson 1.6: Vector Space Retrieval Model - Simplest Instantiation17m
Reading1 lectura
Week 1 Overview10m
Quiz2 ejercicios de práctica
Week 1 Practice Quizs
Week 1 Quizs
Semana
2
Horas para completar
4 horas para completar

Week 2

In this week's lessons, you will learn how the vector space model works in detail, the major heuristics used in designing a retrieval function for ranking documents with respect to a query, and how to implement an information retrieval system (i.e., a search engine), including how to build an inverted index and how to score documents quickly for a query. ...
Reading
6 videos (Total 102 minutos), 1 reading, 2 quizzes
Video6 videos
Lesson 2.2: TF Transformation9m
Lesson 2.3: Doc Length Normalization18m
Lesson 2.4: Implementation of TR Systems21m
Lesson 2.5: System Implementation - Inverted Index Construction18m
Lesson 2.6: System Implementation - Fast Search17m
Reading1 lectura
Week 2 Overview10m
Quiz2 ejercicios de práctica
Week 2 Practice Quizs
Week 2 Quizs
Semana
3
Horas para completar
7 horas para completar

Week 3

In this week's lessons, you will learn how to evaluate an information retrieval system (a search engine), including the basic measures for evaluating a set of retrieved results and the major measures for evaluating a ranked list, including the average precision (AP) and the normalized discounted cumulative gain (nDCG), and practical issues in evaluation, including statistical significance testing and pooling....
Reading
6 videos (Total 75 minutos), 2 readings, 3 quizzes
Video6 videos
Lesson 3.2: Evaluation of TR Systems - Basic Measures12m
Lesson 3.3: Evaluation of TR Systems - Evaluating Ranked Lists - Part 115m
Lesson 3.4: Evaluation of TR Systems - Evaluating Ranked Lists - Part 210m
Lesson 3.5: Evaluation of TR Systems - Multi-Level Judgements10m
Lesson 3.6: Evaluation of TR Systems - Practical Issues15m
Reading2 lecturas
Week 3 Overview10m
Programming Assignments Overview10m
Quiz2 ejercicios de práctica
Week 3 Practice Quizs
Week 3 Quizs
Semana
4
Horas para completar
4 horas para completar

Week 4

In this week's lessons, you will learn probabilistic retrieval models and statistical language models, particularly the detail of the query likelihood retrieval function with two specific smoothing methods, and how the query likelihood retrieval function is connected with the retrieval heuristics used in the vector space model. ...
Reading
7 videos (Total 88 minutos), 1 reading, 2 quizzes
Video7 videos
Lesson 4.2: Statistical Language Model17m
Lesson 4.3: Query Likelihood Retrieval Function12m
Lesson 4.4: Statistical Language Model - Part 112m
Lesson 4.5: Statistical Language Model - Part 29m
Lesson 4.6: Smoothing Methods - Part 19m
Lesson 4.7: Smoothing Methods - Part 213m
Reading1 lectura
Week 4 Overview10m
Quiz2 ejercicios de práctica
Week 4 Practice Quizs
Week 4 Quizs
4.4
88 revisionesChevron Right
Beneficio de la carrera

60%

consiguió un beneficio tangible en su carrera profesional gracias a este curso
Promoción de la carrera

33%

consiguió un aumento de sueldo o ascenso

Principales revisiones

por JHSep 21st 2016

Great course for those trying to understand how ro analyse and process text data. It has the right amount of tools to help you understand the basics of information retrieval and search engines.

por PMAug 29th 2016

A great overview of text retrieval methods. Good coverage of search engines. A longer course will cover search engine better (remember this is a 6 weeker)

Instructor

Avatar

ChengXiang Zhai

Professor
Department of Computer Science
Graduation Cap

Comienza a trabajar para obtener tu maestría

Este curso es parte del Master in Computer Science completamente en línea de University of Illinois at Urbana-Champaign. Si eres aceptado en el programa completo, tus cursos cuentan para tu título.

Acerca de University of Illinois at Urbana-Champaign

The University of Illinois at Urbana-Champaign is a world leader in research, teaching and public engagement, distinguished by the breadth of its programs, broad academic excellence, and internationally renowned faculty and alumni. Illinois serves the world by creating knowledge, preparing students for lives of impact, and finding solutions to critical societal needs. ...

Acerca del programa especializado Data Mining

The Data Mining Specialization teaches data mining techniques for both structured data which conform to a clearly defined schema, and unstructured data which exist in the form of natural language text. Specific course topics include pattern discovery, clustering, text retrieval, text mining and analytics, and data visualization. The Capstone project task is to solve real-world data mining challenges using a restaurant review data set from Yelp. Courses 2 - 5 of this Specialization form the lecture component of courses in the online Master of Computer Science Degree in Data Science. You can apply to the degree program either before or after you begin the Specialization....
Data Mining

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.