Acerca de este Curso
39,605

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 25 horas para completar

Sugerido: 4 недели обучения, через 3-5 часа / неделю...

Ruso (Russian)

Subtítulos: Ruso (Russian)

Habilidades que obtendrás

Topic ModelData Clustering AlgorithmsMachine LearningData Visualization (DataViz)

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Aprox. 25 horas para completar

Sugerido: 4 недели обучения, через 3-5 часа / неделю...

Ruso (Russian)

Subtítulos: Ruso (Russian)

Programa - Qué aprenderás en este curso

Semana
1
7 horas para completar

Кластеризация

Добро пожаловать на курс "Поиск структуры в данных"! В этом курсе вы узнаете про задачи машинного обучения, в которых требуется не предсказать целевую переменную, а найти некоторые внутренние закономерности в данных — например, сгруппировать объекты по схожести, или определить наиболее важные признаки. В первом модуле мы изучим задачу кластеризации, направленную на поиск групп близких объектов. Вы узнаете про основные подходы к её решению, а также узнаете, как можно выбрать хороший алгоритм кластеризации, не имея правильных ответов....
15 videos (Total 109 minutos), 8 readings, 5 quizzes
15 videos
Как устроена специализация, и зачем ее проходить3m
Структура уроков1m
Задача кластеризации4m
Примеры задач кластеризации5m
Знакомство с методами кластеризации9m
Пример: кластеризация текстов по теме13m
Выбор метода кластеризации7m
МФТИ1m
Метод K средних (K-Means)10m
Expectation Maximization (EM-алгоритм)9m
Агломеративная иерархическая кластеризация12m
Графовые методы кластеризации4m
Методы, основанные на плотности6m
Оценка качества и рекомендации по решению задачи кластеризации13m
8 lecturas
Блокнот из примера кластеризации текстов20m
Слайды к лекциям10m
Конспект10m
Немного о Yandex10m
МФТИ10m
Forum&Chat10m
Слайды к лекциям10m
Конспект10m
4 ejercicios de práctica
Знакомство с кластеризацией6m
Введение в кластеризацию8m
Некоторые методы кластеризации8m
Подробнее о методах кластеризации12m
Semana
2
6 horas para completar

Понижение размерности и матричные разложения

В предыдущем модуле мы обсуждали, как кластеризовать объекты, а в этом модуле займёмся признаками. Нередко возникают ситуации, в которых далеко не все признаки нужны для решения задачи — или же нужны все, но при этом их слишком много. В этом случае нужно перейти в новое признаковое пространство меньшей размерности. Для этого можно либо отбирать наиболее важные признаки, либо порождать новые на основе исходных — мы обсудим оба подхода. В частности, мы разберёмся с методом главных компонент, который используется в самых разных задачах машинного обучения. Затем мы перейдём к матричным разложениям — мы изучим несколько методов, позволяющих получить приближение исходной матрицы в виде произведения нескольких матриц меньшей размерности. Такая аппроксимация часто используется в задачах машинного обучения, например, для понижения размерности данных, восстановления пропущенных значений в матрицах и построения рекомендательных систем....
15 videos (Total 108 minutos), 4 readings, 5 quizzes
15 videos
Одномерный отбор признаков8m
Жадные методы отбора признаков6m
Отбор признаков на основе моделей6m
Понижение размерности4m
Метод главных компонент: постановка задачи7m
Метод главных компонент: решение6m
Матричные разложения13m
SGD и ALS5m
Прогнозирование неизвестных значений в матрице6m
Проблема отсутствия негативных примеров и implicit методы6m
Вероятностный взгляд на матричные разложения5m
Неотрицательные матричные разложения: постановка и решение10m
Неотрицательные матричные разложения: функционалы и инициализация5m
Обработка пропусков8m
4 lecturas
Слайды к лекциям10m
Конспект10m
Слайды к лекциям10m
Конспект10m
4 ejercicios de práctica
Отбор признаков6m
Понижение размерности и отбор признаков14m
Матричные разложения8m
Неотрицательные матричные разложения10m
Semana
3
4 horas para completar

Визуализация и поиск аномалий

Добро пожаловать на третью неделю курса! В ней мы обсудим две задачи: обнаружение аномалий и визуализация данных. Обнаружение аномалий направлено на поиск объектов, которые являются особенными в некотором смысле. Например, это могут объекты с такими значениями признаков, которые далеки от имеющихся в обучающей выборке — вполне ожидаемо, что на таких объектах модель выдаст очень плохие прогнозы. Вы узнаете, как можно формально дать определение аномалий и с помощью каких методов можно решать задачу их поиска. Вторая задача, о которой мы поговорим — это визуализация, то есть отображение многомерной выборки в пространство размерности два или три. В теории визуализация близка к понижению размерности — но за счёт того, что нам нужно найти всего два или три признака, можно использовать очень сложные нелинейные методы....
8 videos (Total 57 minutos), 5 readings, 5 quizzes
8 videos
Параметрическое восстановление плотности9m
Непараметрическое восстановление плотности8m
Одноклассовый SVM5m
Задача визуализации5m
Многомерное шкалирование4m
Метод t-SNE6m
Визуализация данных в sklearn12m
5 lecturas
Слайды к лекциям10m
Конспект10m
Визуализация данных в sklearn10m
Слайды к лекциям10m
Конспект10m
4 ejercicios de práctica
Восстановление плотности6m
Поиск аномалий4m
Методы SNE и t-SNE6m
Визуализация14m
Semana
4
10 horas para completar

Тематическое моделирование

Люди уже много веков сохраняют свои знания в виде книг, а крупнейшая на сегодняшний день коллекция информации — Интернет — состоит из огромного количества текстов. Тексты, по сути, являются наиболее популярным видом данных, и поэтому очень важно уметь искать в них закономерности. Тематическое моделирование — это способ семантического анализа коллекции текстовых документов. Тематическая модель позволяет для каждого документа найти темы, которые его описывают, и кроме того показывает, какие слова характеризуют ту или иную тему. Другими словами, мы находим более компактное представление большого набора текстов в виде нескольких тем. С математической точки зрения тематическая модель — это еще один вид матричного разложения, где в качестве исходной матрицы выступает матрица частот слов в документах. На четвертой неделе мы поговорим о том, где применяют тематические модели, какие они бывают, как их строить и как оценивать. ...
14 videos (Total 151 minutos), 8 readings, 6 quizzes
14 videos
Постановка задачи тематического моделирования12m
Базовые тематические модели и EM-алгоритм14m
Регуляризация тематических моделей10m
Мультимодальные тематические модели9m
Внутренние критерии качества тематических моделей9m
Внешние критерии качества тематических моделей16m
Визуализация тематических моделей10m
Тематические модели на практике11m
Пример использования библиотеки gensim для построения тематической модели10m
Установка BigARTM в Windows3m
Установка BigARTM в Linux Mint2m
Установка BigARTM в Mac OS-X3m
Пример использования библиотеки BigARTM для построения тематической модели19m
8 lecturas
Слайды к лекциям10m
Конспект10m
Ноутбук из демонстрации использования gensim10m
Ноутбук из демонстрации использования BigARTM10m
Слайды к лекциям10m
Конспект10m
Финальные титры10m
Стань ментором специализации10m
4 ejercicios de práctica
Постановка задачи и базовые понятия6m
Тематическое моделирование-18m
Критерии качества тематических моделей6m
Тематическое моделирование-26m
4.7
108 revisionesChevron Right

71%

comenzó una nueva carrera después de completar estos cursos

56%

consiguió un beneficio tangible en su carrera profesional gracias a este curso

25%

consiguió un aumento de sueldo o ascenso

Principales revisiones

por PKMay 4th 2018

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

por AAJan 9th 2017

Интересный курс, замечательные преподаватели. Есть моменты когда лекция довольно сложная, а тест простой, это оставляет тревожное ощущение недоученности :)

Instructores

Avatar

Константин Воронцов

доктор физико-математических наук, профессор
Кафедра интеллектуальных систем

Acerca de Instituto de Física y Tecnología de Moscú

Московский физико-технический институт (неофициально известный как МФТИ или Физтех) является одним из самых престижных в мире учебных и научно-исследовательских институтов. Он готовит высококвалифицированных специалистов в области теоретической и прикладной физики, прикладной математики, информатики, биотехнологии и смежных дисциплин. Физтех был основан в 1951 году Нобелевской премии лауреатами Петром Капицей, Николаем Семеновым, Львом Ландау и Сергеем Христиановичем. Основой образования в МФТИ является уникальная «система Физтеха»: кропотливое воспитание и отбор самых талантливых абитуриентов, фундаментальное образование высшего класса и раннее вовлечение студентов в реальную научно-исследовательскую работу. Среди выпускников МФТИ есть Нобелевские лауреаты, основатели всемирно известных компаний, известные космонавты, изобретатели, инженеры....

Acerca de Yandex

Yandex is a technology company that builds intelligent products and services powered by machine learning. Our goal is to help consumers and businesses better navigate the online and offline world....

Acerca del programa especializado Машинное обучение и анализ данных

Мы покажем, как проходит полный цикл анализа, от сбора данных до выбора оптимального решения и оценки его качества. Вы научитесь пользоваться современными аналитическими инструментами и адаптировать их под особенности конкретных задач. В рамках специализации вы освоите основные темы, необходимые в работе с большим массивом данных, в т.ч. современные методы классификации и регрессии, поиск структуры в данных, проведение экспериментов, построение выводов, базовая фундаментальная математика, основы программирования на Python. Мы разберём, как построить рекомендательную систему, оценить эмоциональную окраску текста, спрогнозировать спрос на товар, оценить вероятность клика по рекламе и т.д. В финале вам потребуется выполнить проект собственной системы, решающей любую актуальную для бизнеса задачу. Результатом будет наглядная работающая модель, которую вы сможете использовать в вашей повседневной работе или продемонстрировать на собеседовании. Все, прошедшие специализацию, могут принять участие в Программе трудоустройства. Если вы заинтересованы в новых проектах, новых перспективах и возможностях - пройдите обучение по Специализации и подайте заявку....
Машинное обучение и анализ данных

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.