В машинном обучении встречаются задачи, где нужно изучить структуру данных, найти в них скрытые взаимосвязи и закономерности. Например, нам может понадобиться описать каждого клиента банка с помощью меньшего количества переменных — для этого можно использовать методы понижения размерности, основанные на матричных разложениях. Такие методы пытаются сформировать новые признаки на основе старых, сохранив как можно больше информации в данных. Другим примером может служить задача тематического моделирования, в которой для набора текстов нужно построить модель, объясняющую процесс формирования этих текстов из небольшого количества тем.
Такие задачи назвают обучением без учителя. В отличие от обучения с учителем, в них не предполагают восстановление зависимости между объектами и целевой переменной.
Из этого курса вы узнаете об алгоритмах кластеризации данных, с помощью которых, например, можно искать группы схожих клиентов мобильного оператора. Вы научитесь строить матричные разложения и решать задачу тематического моделирования, понижать размерность данных, искать аномалии и визуализировать многомерные данные.
De la lección
Кластеризация
Добро пожаловать на курс "Поиск структуры в данных"! В этом курсе вы узнаете про задачи машинного обучения, в которых требуется не предсказать целевую переменную, а найти некоторые внутренние закономерности в данных — например, сгруппировать объекты по схожести, или определить наиболее важные признаки. В первом модуле мы изучим задачу кластеризации, направленную на поиск групп близких объектов. Вы узнаете про основные подходы к её решению, а также узнаете, как можно выбрать хороший алгоритм кластеризации, не имея правильных ответов.