Chevron Left
Volver a Поиск структуры в данных

Opiniones y comentarios de aprendices correspondientes a Поиск структуры в данных por parte de Instituto de Física y Tecnología de Moscú

4.7
estrellas
1,443 calificaciones
164 reseña

Acerca del Curso

В машинном обучении встречаются задачи, где нужно изучить структуру данных, найти в них скрытые взаимосвязи и закономерности. Например, нам может понадобиться описать каждого клиента банка с помощью меньшего количества переменных — для этого можно использовать методы понижения размерности, основанные на матричных разложениях. Такие методы пытаются сформировать новые признаки на основе старых, сохранив как можно больше информации в данных. Другим примером может служить задача тематического моделирования, в которой для набора текстов нужно построить модель, объясняющую процесс формирования этих текстов из небольшого количества тем. Такие задачи назвают обучением без учителя. В отличие от обучения с учителем, в них не предполагают восстановление зависимости между объектами и целевой переменной. Из этого курса вы узнаете об алгоритмах кластеризации данных, с помощью которых, например, можно искать группы схожих клиентов мобильного оператора. Вы научитесь строить матричные разложения и решать задачу тематического моделирования, понижать размерность данных, искать аномалии и визуализировать многомерные данные. Видео курса разработаны на Python 2. Задания и ноутбуки к ним адаптированы к Python 3....

Principales reseñas

PK
3 de may. de 2018

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

AS
22 de may. de 2016

Изначально хотел поставить 3 или 4, но тематические модели спасли. Материал очень полезный. И изложение на высоте. Спасибо.

Filtrar por:

1 - 25 de 158 revisiones para Поиск структуры в данных

por Шаланкин М Д

14 de mar. de 2019

Курс достаточно старый, возникает много конфликтов версий, данные не обновляют. Ещё пока релевантная информация. UPD: (прошёл 5 курсов из этой специализации, никому не советую проходить больше двух первых, потому что цена - качество не соответсвуют)

por Kapitanov A

29 de oct. de 2019

Курс интересный, но к сожалению есть много жирных минусов:

1) Последняя неделя - преподается скомканно и сумбурно. Лекций много, а практические материалы - недоработаны

2) Задание по программированию на 4 неделе (с gensim) - не адаптировано под современные версии. Для решения задач требуются танцы с бубнами и установка отдельных окружений со старыми версиями (правильную ещё и поискать надо!)

3) Последнее задание, которое не влияет на оценку (Постнауки) также неадаптировано и сделано на коленке. BigARTM это просто ужас. Местами вообще не понятно, что от обучающегося хотят.

4) Сама концепция использоваться старые и заброшенные библиотеки - так себе. В итоге у человека остается осадок в виде "как танцевать с бубном", а не как понижать размерность, кластеризовать данные и прочее.

5) В тетрадках на Python 3 в шапке указывают на каких версиях библиотек проверены задачи. Но по факту - они не проверены. В частности, так и не удалось победить NaN-ы в seaborn pairplot (при этом бОльшая часть сокурсников просто скопипастила чужие решения).

В остальном - курс неплохой, без этой части в ML и DS просто никуда. Отдельное спасибо Соколову Е. и Воронцову К. за качественную подачу материала.

por Рогозин А

9 de abr. de 2020

Большинство лекторов понятно объясняют материал - иными словами, говорят на человеческом языке. Домашние задания позволяют пощупать разнообразные методы, которые на самом деле применяются на практике - и это круто.

Проблемы с восприятием материала возникают только от лекций Воронцова про тематическое моделирование, так как он большую часть времени кидается формулами и матаном без плавного перехода к ним. Сразу заметен старый стиль преподавания из университета. Благо тема обработки текста лучше раскроется в пятом курсе этой специальности уже с другим лектором)

P.S. BigARTM - тихий ужас, так и не удалось его установить(

por Mamedov M

19 de nov. de 2019

Большая-большая работа. Спасибо преподавателям, МФТИ, Яндексу за возможность изучать предмет таким невероятно крутым способом

por Мария Е Ч

25 de jul. de 2018

Курс всем хорош, но три звезды только за задание с анализом текстов, где нужна была устаревшая версия gensim. Об этом не предупредили в тексте задачи, а грейдер не принимал ответы, выдаваемые новой версией. Потратила много времени.

por Artem G

22 de dic. de 2019

Все круто! Но хотелось бы использования более новых версий библиотек по тематическому моделированию!

por Konstantin A

31 de oct. de 2018

Хорошая теоретическая основа, видео. Но задания все пора обновлять. Используются старые версии библиотек. В видео по установке и работе с библиотеками сильно устаревшая информация. Впрочем, это не сильно мешает понять тематическое моделирование.

por Новоселов Е Д

27 de jun. de 2020

Все время просят установить python 2.7, кошмар, зачем мне ставить эту версию, только для выполнения конкретного задания? могли бы и обновить версию для третьего питона, почему курс не обновляется, до сих пор не понимаю....особенно это касается BigARTM. еще, в целом по пройденным курсам специализации видео с практическими занятиями также на втором питоне, а третьему ничего никакого внимания не уделяется от слова вообще. интересно, когда на это, наконец, обратят внимание авторы специализации, ведь годы материал де-факто не обновляется((

por Alex Z

7 de jun. de 2020

Старые версиии библиотек, курс не обновляется. Если не получается установить artm - делайте через гугл колаб, там все просто с установкой. Лекции Воронцова по тематическому моделированию состоят из голой теории, нет практических примеров, хотя тема очень интересная и примеры легко найти или придумать. Задания странные, половина проходится даже без знания курса, фит-предикт сделать на моделях и немного программирования.

por Баранов В М

16 de nov. de 2020

Начали за здравие, а кончили за упокой. Последняя неделя очень сырая. Большая часть материала проговаривается как заученный текст, без примеров и т.п. одни лишь двухэтажные формулы. ноутбуки с примерами недоделаны. И почему-то никто не хочет переделать задание для актуальной версии gensim. Это конечно опыт, но уж слишком болезненно он дается)

por A B

16 de jun. de 2020

Старый, не поддерживаемый курс. Старый код, библиотеки, танцы с бубном.

por Покровский П В

5 de nov. de 2020

Стыдно вообще брать деньги за такое. Курс (особенно четвертая неделя) построен на безнадежно устаревших библиотеках, в заданиях предлагается "присылать на ручную проверку". Чтобы грейдер отработал - нужно неделю возиться с костылями в виде специфических версий библиотек, ставить питон 2.7 (конец 2020 алё!) и еще не факт, что сойдется. Разочарован.

por Timur B

13 de may. de 2018

Первые три недели интересные и методы рассмотрены важные. Тематическое моделирование, на мой взгляд, штука достаточно специфичная и многим она не понадобится совсем. Хотелось бы чего-то более общего. А так курс неплохой.

por milo h

22 de nov. de 2019

Я прекрасно понимаю, что материал расчитан на широкую аудиторию с разной степенью подготовки, но если вы поверхностно излагаете суть работы того или иного алгоритма, то будте добры не запутывать слушателя еще больше. Не надо вскользь употреблять каких-то глубоких терминов (прям сейчас могу вспомнить только "апостериорная вероятность"), это очень запутывает и демотивирует слушателя. Евгений, какой смысл в лекциях о теории вероятности показывать математические выкладки на слайдах и ничего о них не рассказывать? Вы только еще больше с толку сбиваете. Больше всего подгорает именно от ваших лекций.

Хотел поставить два, но из-за довольно полезных практических занятий ставлю три.

por Задойный А

10 de jun. de 2016

После 2 курса здесь почти отдыхаешь (но именно что почти, многие задачи гораздо коварнее, чем кажутся на первый взгляд).

Курс не требует материала из 2, а вот 1 очень пригодится (разве что вы уже хорошо знакомы с python и не успели забыть линейную алгебру и матан со времён ВУЗа).

Курс не для новичков. С наскока не пройти. Но примеры, которые даются в курсе очень жизненные, а потому чувствуешь, что это не сухая академическая наука, а настоящая жизнь, то что применяется каждый день вокруг тебя почти везде: поиск, рекомендации фильмов, контекстная реклама в почте, «с этим товаром покупают» и «выбор редакции».

Отдельно довольно занятно то как с помощью описанных методов удаётся оптимизировать пространство признаков и превратить огромные массивы «информационного мусора» во вполне понятные и интерпретируемые даже человеческим глазом данные, графики, гистограммы, схемы…

Алексей З.

por Шляхов А В

9 de jul. de 2020

Отличный курс!

Мне понравился, поскольку задачи подобного характера зачастую нестандартные.

Объяснение тоже понравилось, хоть в 1 задании грейдер ожидал результат по итогу работы более старой версии библиотеки)

por A D

9 de ene. de 2017

Интересный курс, замечательные преподаватели. Есть моменты когда лекция довольно сложная, а тест простой, это оставляет тревожное ощущение недоученности :)

por Валерия Р

29 de mar. de 2018

Для меня как новичка в Питоне, было увлекательно, и временами сложно, но оно тог стоило, спасибо!

por Dmitry K

23 de sep. de 2017

Полноценно понравилась только первая неделя с интересным практическим заданием.

На остальных неделях был просто ужасный перегруз теоретической информацией, поэтому лекции прослушивались фактически только "для галочки" и их познавательная ценность стремилась к нулю. Осознать материал из лекций человеку с базовыми знаниями линейной алгебры просто нереально.

Последняя неделя это вообще торжество теории над практикой: при всем моем уважении к Константину Воронцову лекции читались как будто для людей, которые уже потратили пару месяцев на плотную работу с тематическим моделированием. Обилие специфичной терминологии, отсутствие каких-либо полноценных ассоциаций с практическим применением описываемой теории полностью перечеркивают полезность курса.

Практические задания по большей части выполнялись по принципу "китайской комнаты": я что-то пишу по инструкциям, но понимание напрочь отсутствует.

por Petr K

10 de ene. de 2019

По-моему, отличный курс.

Лично для меня последняя неделя по тематическому моделированию оказалась очень длительной для изучения (потратил пару недель, тогда как первые три недели прошел меньше чем за неделю). В принципе, совсем не обязательно было углубляться, но я не устоял перед соблазном и поразбирался с EM-алгоритмом на будущее.

Курс рекомендую - отлично дополняет второй курс про обучение с учителем. Посмотрим, что будет дальше.

por Kirill V

2 de jun. de 2017

Хороший курс, все очень понравилось!

Отличное введение в методы кластеризации, отбор признаков, матричные разложения, поиск выбросов, визуализацию и тематическое моделирование.

Немного не хватило практики на 2 и 3 неделях, что, однако, компенсируется очень подробными теоретическими материалами.

Хочу сказать спасибо организаторам и преподавателям! Каждый следующий курс специализации радует все больше!

por Natalia A

9 de ene. de 2018

Курс замечательный, хорошие задания, подводит обновляемость грейдера с учетом новых версий библиотек, и некоторые исполняемые ноутбуки не всегда корректно работают с новыми версиями библиотек. Хотелось бы большем мобильности в обратной связи.

Мне курс в целом понравился, коментарии коллег на форуме курсеры и в Slack помогают разобраться в некоторых тонкостях заданий и тем.

Спасибо!

por Anton R

14 de sep. de 2018

Курс достаточно насыщен. Понятно, что что трудно сделать его полнее без увеличения длительности. Из пожеланий, хотелось бы больше ссылок на описания алгоритмов. Возможно, есть статьи на русском языке. Да, просьба здесь и дальше: в конспектах указывать англоязычные термины и ссылки на базовые статьи. Спасибо))!

por Хабибуллин С

16 de jun. de 2021

Н​адо много пыхтеть самому, читать форум, смотреть документацию, просто гуглить, не забывать про здравый смысл. Оцениваемые задания (по % к завершению курса) не всегда явно отражают этот % - возможно и нельзя сделать равносложные задачи. Но в целом курс интересный, полезный.

por Горячев В Д

22 de abr. de 2019

Все остальное отлично! Преподаватели хорошо рассказывают

Последнее задание c BiaARTM не удалось сделать, т.к. не смог установить данную библиотеку.

И ответы в некоторых заданиях пора изменить, т.к. бывает, что ответы Python 3 не принимаются(рассчитано ведь на Python 2.7)