Цель курса - дать слушателям начальные представления и навыки обращения с приближенными аналитическими вычислениями. Такие методы широко используются в практической работе физиков, но почти не излагаются в регулярных лекционных курсах, что препятствует включению студентов в исследовательский процесс. Большинство лекций также содержат в себе семинарскую часть с разбором задач. Важная часть курса – полноценные задачи для самостоятельного решения с целью закрепления практических навыков применения излагаемых методов вычислений. Предполагается, что слушатели знакомы с основами стандартных математических курсов: математического анализа, линейной алгебры, обыкновенных дифференциальных уравнений.
De la lección
Обыкновенные дифференциальные уравнения с «малым параметром»
Часто бывает так, что ту или иную сложную физическую задачу, решение которой неизвестно, можно свести к какой-то хорошо изученной системе с добавлением небольшого возмущения. При этом, возмущение, в меру его малости, можно учитывать приближенно, что позволяет с некоторой точностью решить исходную задачу. В этом модуле Вы научитесь приближенно решать дифференциальные уравнения с малыми параметрами, рассматривая малые члены в уравнении как возмущение. На примере задач с гармоническим осциллятором, Вы познакомитесь с важным понятием секулярных поправок, то есть поправок к решению дифференциального уравнения, возрастающих со временем. Наличие таких вкладов в решении может сигнализировать о неприменимости наивной теории возмущений на больших временах и необходимости введения в нее модификаций. Вы научитесь использовать улучшенную теорию возмущений, которая аккуратно обрабатывает секулярные возмущения, и применимую на больших временах. В модуле Вам будут предложены два задания для самостоятельного решения. Будьте готовы: этот модуль - самый объемный в курсе!